
Smart Metering, ein weiterer Impuls für die Photovoltaik?

Quelle: Fraunhofer ISE

7. Österreichische PHOTOVOLTAIK Tagung

17. Juni 2009, Haus der Wirtschaft, Wirtschaftskammer Österreich, Wien

Torsten Kukuk M.A.

Forschungsgruppe Energie- und Kommunikationstechnologien EnCT GmbH, Freiburg

torsten.kukuk@enct.de

Überblick

- Portrait EnCT
- Smart Metering
 - politische Rahmenbedingungen
 - intelligente Stromzähler
 - Impulse für die Photovoltaik
 - Feedback
 - Variable Tarife
 - Lastmanagement
 - Fazit

Heute erleben wir zwei parallele Revolutionen

• Der Übergang von einer **primär fossilen** zu einer **langfristig regenerativen** Energieversorgung

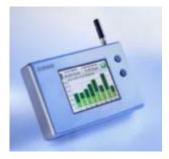
 Der Übergang von der analogen zu einer digitalen, global vernetzen Informations- und Kommunikationswelt

Portrait EnCT

Solar-Info-Center, Freiburg

- Split-off des Fraunhofer ISE, Freiburg
- Interdisziplinäres Team mit 20 Mitarbeitern (Ingenieurs-, Wirtschafts-, Sozial- und Kommunikationswissenschaften)

Schwerpunkt Smart Metering


- Marktrecherche
- Produktentwicklung und -design (Tarife, Feedback-Systeme)
- Potentialprognosen (Effizienz- / Marktpotential)
- Consulting (Prozess-und Technologieberatung)
- Wirkungsforschung, Evaluation, Kundensegmentierung

www.enct.de

Projektauswahl

Quelle: EWE AG

- eMotivation (Energieprogramm 2020 Österreich):
 Informative Rechnung, Wirkungsforschung
- **EWE Box** (EWE AG): Wirkungsforschung
- eTelligence (BMWi eEnergy, EWE AG): Tarifentwicklung,
 Feedback-Systeme, Wirkungsforschung
- Smart Watts (BMWi eEnergy, utilicount, FIR): Demand-Response-Programme, Business Case Berechnung,
 Wirkungsforschung
- Swiss Metering(BFE): Studie zu Smart Metering in der Schweiz

Smart Metering – Politische Rahmenbedingungen

- 1. Endenergieeffizienzrichtlinie (EU-RL 2006/32/EG, Art. 13)
 - Individuelle Zähler die den tatsächlichen Energieverbrauch und die tatsächliche
 Nutzungszeit wiederspiegeln sollen eingeführt werden. (vgl. Abs 1)
- **2. 3. Binnenmarktrichtlinie** (in der Abstimmung)
 - 2020 sollen 80% der Verbraucher mit intelligenten Stromzählern ausgestattet sein
- 3. Umsetzung in Deutschland (Meseberger Beschlüsse der Bundesregierung 2007)
 - Förderung der Einführung intelligenter Stromzähler
 - Umsetzung durch Novellierung des EnWG und der Messzugangsverordnung in 2008
 - größtmöglicher Wettbewerb und geringstmögliche Einschränkung bei Verbrauchern und Unternehmen
 - Kein verpflichtender flächendeckender Einbau einer vorgegebenen Standardtechnik zu einem festgelegten Zeitpunkt

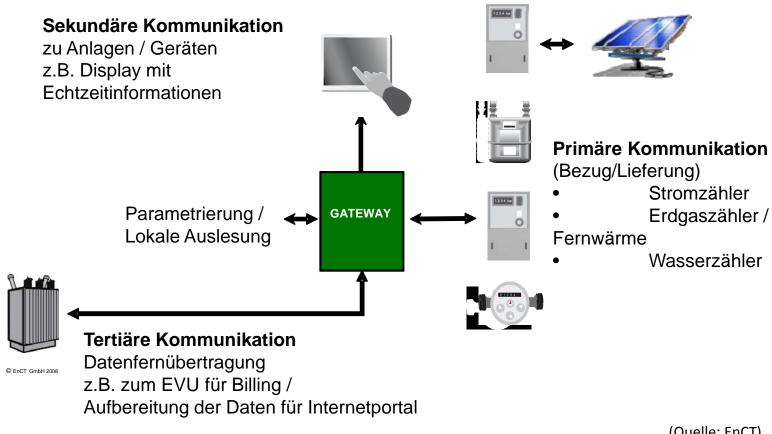
Smart Metering – gesetzliche Vorgaben Deutschland

Die wesentlichen Verpflichtungen sind:

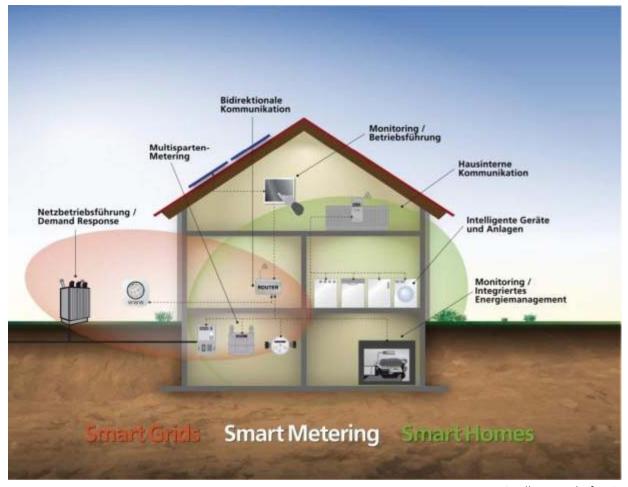
- ab 2010: **Einbau von intelligenten Zählern** nur für Neubauten und bei größeren Renovierungen
- ab 2010 müssen intelligente Zähler für bestehende Messeinrichtungen angeboten werden.
- ab 30.12.2010 müssen Energieversorgungsunternehmen einen Tarif für Letztverbraucher von Elektrizität anbieten, der einen Anreiz zu Energieeinsparung oder Steuerung des Energieverbrauchs setzt, was insbesondere zeit- und lastvariable Tarife sind.

Smart Metering – Funktionen von Intelligenten Stromzählern

- Elektromechanisches Messwerk
- Zählerstand
- Manuelle Ablesung (Kundenselbstablesung, Service-Unternehmen)
- Kosten 15 30 Euro
- Eichfrist 12 Jahr plus Stichprobe



- Digitales Messwerk
- Fernablesung, (Fernsperrung, Leistungsbegrenzung)
- Tarifregister, Lastgangdatenaufzeichnung (15 min. Werte)
- Manipulationserkennung,
 Messung der Energiequalität
- Kommunikationsschnittstellen
- Kosten 70 150 Euro (je nach Kommunikation)
- Eichfrist 8 Jahr plus Stichprobe


Smart Metering – Kommunikationsschnittstellen

(Quelle: EnCT)

Smart Metering – Was ist das?

Quelle: Fraunhofer ISE

Impulse für Photovoltaik – **Feedback**

"To measure is to know." (Lord Kelvin)

Quelle: EWE AG

Transparenz

Wissen

Wollen

Können

Synchronisierung Verbrauch und Erzeugung

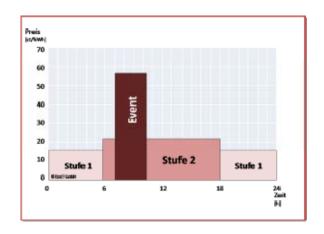
Impulse für Photovoltaik – Feedback

- Monatliche Verbrauchsanalyse mit Informationen zum Energieverbrauch, Kosten und CO2-Emissionen.
- Internet-Portal: Lastgangdaten bis hin zu historischen Monats- und Jahresverbräuchen.
- Display: Echtzeitwerte (Leistung), Lastgang, Tageswerte

Integration der Erzeugungsdaten

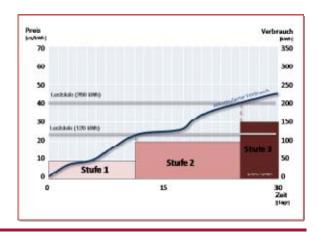
Impulse für Photovoltaik – **Feedback**

Quelle Interactive Institute / Hager


Impulse für Photovoltaik – Smart Metering

- Feedback
- Bessere Synchronisierung von Verbrauch und Erzeugung
- Lastmanagement
- Integration von PV-Wechselrichtern ins Netzmanagement
- Smart Grids, eMobility
- Variable Tarife
- Höhere Wirtschaftlichkeit von PV-Anlagen
- Parität von PV-Strom bei echtzeitbezogener Strompreiskalkulation

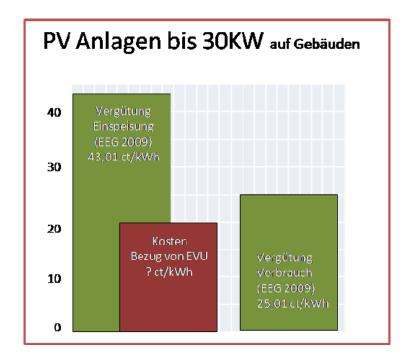
Impulse für Photovoltaik – variable Tarife


Zeitvariabel	
Ohne Event	Mit Event
Die Zeiträume und deren Gültigkeit werden im Vorfeld definiert. Diese gelten ohne Ausnahmen.	In Eventzeiträumen gelten außergewöhnliche Preisstufen, für den sonstigen Zeitraum gelten vorher definierte Preisstufen.

Lastvariabel

Alternative Preisstufen

Der Arbeitspreis ist eine Funktion der Höhe des Verbrauchs und variiert in mehreren diskreten Preisstufen. Der Arbeitspreis der Preisstufe gilt jeweils für den gesamten Verbrauch des Zeitraums


Impulse für Photovoltaik – Verbrauchsvergütung Deutschland

Novellierung Erneuerbare-Energien-Gesetz (EEG 2009) § 33 Absatz (2)

Vergütung von **25,01 Cent** pro kWh **bei Eigenverbrauch**

Es wird nicht mehr nur die Einspeisung sondern auch der direkte Verbrauch der erzeugten Energie gefördert.

Transparenz durch
Smart Metering Feedback.

(©EnCT Basis EEG 2009)

Fazit – Smart Metering

- Integriertes Feedback von Erzeugung und Verbrauch erhöht Transparenz
- Smart Metering ermöglicht variable Tarife
- Wirtschaftlichkeit von PV wird erhöht
- Investitionsanreiz f
 ür Privathaushalte in Photovoltaik

Herzlichen Dank für Ihre Aufmerksamkeit

Torsten Kukuk
EnCT GmbH
Forschungsgruppe Energie- und Kommunikationstechnologien
Emmy-Noether-Str. 2
79110 Freiburg
www.enct.de
Tel. +49 (761) 611 6779-0
Fax +49 (761) 611 6779-99
torsten.kukuk@enct.de

