# Simulation Tools to Study Distribution Systems Including Distributed Generation and Practical Case Studies in Canada

Atef S. Morched, Marc Coursol — CYME International T&D

Chad Abbey — Natural Resources Canada



# Overview

- Introduction
- CYME-NRCan Collaboration
- Utility Survey and Current Status
- CYMDIST Enhancements
- Case Studies Demonstration/Tutoring
- Conclusions



#### Introduction

- The benefits of installing DGs in distribution networks have already been established
- There are several pitfalls to their application to existing distribution systems
- Interaction between DGs and the distribution system involves several phenomena that need thorough investigation
- There is a need for enhanced analysis tools for distribution systems as well as the development of engineering skills in using them



#### NRCan - CYME collaboration











#### CYME/NRCan DG software approach

- 1. Industry survey
  - Identify gaps
- 2. CYMDIST software enhancements
  - Add DG models
  - Add dynamic functionalities
  - Add planned islanded network option
- 3. Knowledge transfer
  - Case studies for training/tutorial material
  - Educate DG issues, relevant standards, new modeling features

# **Utility Survey and Current Status**

- A survey of 30 distribution utilities representing 9 provinces and 2 territories serving over 7million customers was conducted by CYME on behalf of NRCan
- The main objectives of the survey were to:
  - Establish distribution engineers experience and adequacy of analytical tools at their deposal for conduction of DG integration studies
  - Provide insight into the direction distribution planning is heading and its effect on the need for special skills and enhanced tools.



# **Utility Survey and Current Status (Cont.)**

#### The survey results indicated that:

- Major enhancement of current analytical tools is necessary for handling emerging technology in distribution systems
- Increasing distribution engineers familiarity with and ability to handle state of the art is essential
- CYMDIST is the most widely used distribution analysis tool among Canadian engineers



#### **CYME - NRCan Collaboration Plan**

- A collaboration plan between CYME and NRCan Was developed
- The primary objectives of the project are:
  - To add feature to CYMDIST to simplify the use of the program for DG interface studies
  - To implement the most common DG models in CYMDIST and provide adequate means to investigate the impact of DG on distribution networks
- The plan is being implemented in three phases



# Phase I – Steady State Analysis

- Create a library of typical data for DG units in the form of look-up tables or estimation functions
- Provide the ability to simulate isolated distribution systems with embedded generation
- Provide the capability of automated network reduction for easier evaluation of DG integration studies
- Create Test Cases of typical systems involving DG for testing different steady state phenomena



# The System Reduction Concept

System reduction concept is demonstrated in the following figure





# Phase II - Dynamic Analysis

- Implement, in CYMDIST, dynamic models of system components involved in transient stability and frequency behavior studies
- Provide ability to simulate events such as faults, load and generation rejection, component tripping, etc.
- Provide the ability to report and monitor different variables during the dynamic simulation
- Create Test Cases of typical systems to be used for testing dynamic behavior of DS systems



# Phase III - Additional DG Models

- Add models of electronically-interfaced DGs:
  - Micro-turbine generation systems
  - Variable-speed wind energy systems:
    - Direct drive synchronous generator
    - Direct drive permanent magnet generator
    - Doubly-fed induction generator
  - Photovoltaic systems
  - Fuel cell systems
  - Battery energy storage systems



#### Phase III - Additional DG Models (Cont.)

- Develop dynamic models of small DG units of conventional technologies:
  - Combined cycle units
  - Kaplan turbine hydraulic units
- Implement protective functions relevant to distribution systems with embedded DG resources.
- Develop typical distribution system with DG units and set up test cases to illustrate system/unit dynamic interaction



# Case studies - objectives

- To demonstrate the effect of distributed resources on steady-state and dynamic behavior of distribution systems
- Education and dissemination of information
- The study cases demonstrate the response of the system to disturbances and the effect of:
  - Type of embedded generation
  - Operating conditions
  - Degree of penetration of the DG resources



# Distribution system modeled

- Actual 25 kV multi-grounded distribution circuit with several laterals feeding multiple loads.
- The distribution system is connected to the main power system at bus bar B1.
- DG units, of varying types and sizes are connected to bus bars B0, F and G. Loads are connected to bus bars B, C, D, E, F, H and I.
- Total load is 4.627 MW +1.313 MVAR, the largest is 1.5 MW +0.51 MVAR connected to bus bar B.



# Distribution System Modeled (cont.)



INTERNATIONAL T&D

# Phase I - Voltage profile analysis





### Phase I - Voltage profile analysis (Cont.)





# Phase I - Protection coordination study







# Phase II - Dynamic Models of Component

The following components models were used:

- Load model
- Generator models
- Excitation system model
- Prime mover models
- Wind turbine model
- IEEE Anti-Islanding Standards



#### **Load Model**

Load composition is reflected in its dependence on system voltage and frequency:

$$P = Po x (Vpu)nP x [1 + Pfreq (Fpu - 1)]$$

$$Q = Qo x (Vpu)nQ x [1 + Qfreq (Fpu -1)]$$

- Voltage dependence reflected in nP and nQ
- Frequency dependence reflected in Pfreq and Qfreq.



# **Generator Models**

#### Salient pole synchronous generators

 Used in hydraulic units. Model accounts for saliency, sub-transient response and saturation effects.





# **Generator Models (cont.)**

#### Round rotor synchronous machines

 Used for thermal units. Model accounts for subtransient and saturation effects.





# Generator Models (cont'd)

#### Induction generator model

Modeled using equivalent electrical circuit



Induction Generator Equivalent Circuit



# **Excitation System Model**

- Excitation and automatic voltage regulator model
  - Used for salient pole and round rotor synchronous generators





#### **Prime Mover Models**

#### Hydraulic units

- Hydraulic turbine model reproduces water column dynamics and gate control
- Governor model includes permanent and transient droops





Hydraulic Governor and Turbine Model

# Prime Mover Models (cont.)

#### Diesel units

- Diesel unit governor fast response no permanent droop.
- Adjusts unit speed to its set point (60Hz) irrespective of load.

# DIESEL GOVERNOR $\omega \xrightarrow{-(1+sT_3)} \xrightarrow{K(1+sT_4)} e^{-sT_D}$ $T_{min}$ $T_{min}$ $T_{min}$



Governor/Turbine Model of a Diesel Engine

# Prime Mover Models (cont.)

#### Wind turbine model

 Directly coupled induction generators driven by wind turbine.





# Prime Mover Models (cont.)

#### Wind turbine model

- Operates at roughly constant speed.
- Input wind power is determined entirely by wind speed.





# **IEEE Anti Islanding Standards**

# Current IEEE Standards do not allow island operation of distribution systems

#### Voltage limits and clearing times

 When voltage is in specified range, DR disconnects within the clearing times indicated.

| Voltage Range<br>(% of base voltage <sup>a</sup> ) | Clearing Time <sup>b</sup> (s) |  |
|----------------------------------------------------|--------------------------------|--|
| V< 50                                              | 0.16                           |  |
| 50 ≤V<88                                           | 2                              |  |
| 110 <v<120< td=""><td colspan="2">1</td></v<120<>  | 1                              |  |
| V ≥ 120                                            | 0.16                           |  |

#### Notes.

- (a) Base voltages are the nominal system voltages.
- (b) DR  $\leq$  30kW, Maximum Clearing Times; DR > 30kW, Default Clearing Times



# IEEE Anti Islanding Standards (cont.)

#### Frequency limits and clearing times

 When frequency is in specified range, DR shall disconnect within the clearing times as indicated.

| 20 - 10 - 111 - 120 - 1                                                          | COLUMN DE CONTROL DE C | POTENTICE SUPPLY AND A STATE OF THE STATE OF |
|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DR SIZE                                                                          | Frequency Range (Hz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Clearing Time <sup>a</sup> (s)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ≤30 kW                                                                           | > 60.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                  | <59.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| >30 kW                                                                           | >60.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| < {59.8 - 57.0} (adjustable set-point)                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Adjustable 0.16 to 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                  | <57.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Note. (a) DR ≤ 30 kW, Maximum Clearing Times; DR > 30 kW, Default Clearing Times |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |



# Phase II - Study Cases

- System response to:
  - 1. Major disturbances load or generation rejection short circuits
  - 2. Detection of island formation
  - 3. System operation in island mode

Study cases are repeated for different DG types, mixes and penetration levels.



# Response to Major Disturbances - Case 1

- Response to disturbances not resulting in system
   separation load or generation rejection Sever SCs
- Investigated system conditions:
  - A. Distribution system with hydraulic generation
    - A.1 Self-sufficient distribution system
    - A.2 Over generating distribution system
  - B. Distribution system with wind generation
    - B.1 Self-sufficient distribution system
    - B.2 Over generating distribution system



### A. Distribution System with Hydraulic Units

#### A.1.1 - Loss of load condition

# Frequency Response to Load Loss

Balanced Load/Generation
Hydro Units



- Frequency returns to its nominal value (60Hz)
- Maximum frequency excursion (60.07 Hz) within IEEE limits



#### A. Distribution System with Hydraulic Units (cont.)

#### A.1.1 - Loss of load condition

Unit Load Response to Load Loss Balanced Load/Generation Hydro Units



Generator loads return to their original values



#### A. Distribution System with Hydraulic Units (cont.)

#### A.1.1 - Loss of load condition

Transmission System Response to Load Loss

Balanced Load/Generation
Hydro Units



Feeding system absorbs the excess power



#### A. Distribution System with Hydraulic Units (cont.)

#### A.1.2 - Loss of generation condition

Frequency Response to Generation Loss

Balanced Load/Generation
Hydro Units



- Frequency returns to its nominal value (60Hz)
- Maximum frequency excursion (59.98 Hz) within IEEE limits



## A.1.2 - Loss of generation condition

Unit Load Response to Generation Loss Balanced Load/Generation Hydro Units



Generator loads return to their original values



#### A.1.2 - Loss of generation condition

Transmission System
Response to
Generation Loss
Balanced Load/Generation
Hydro Units



Feeding system supplies the deficit power



#### A.1.3 - Short circuit conditions

Voltage Response to three Phase S.C. at Bus H Balanced Load/Generation Hydro Units



- The voltage dips vary with distance from fault
- The voltages at buses B0, F, and G drop to 0.56 pu, 0.32 pu, and 0.15 pu



#### A.1.3 - Short circuit conditions

Frequency Response to three-Phase S.C. at Bus H

Balanced Load/Generation
Hydro Units



- Frequency returns to its nominal value (60Hz)
- Maximum frequency excursion (60.14 Hz) within IEEE limits



# A.2.1 - Loss of generation condition

Frequency Response to Generation Loss Generation/Load Ratio 2/1 Hydro Units



- Frequency returns to its nominal value (60Hz)
- Maximum Frequency excursion (59.95 Hz) within IEEE limits.



#### **B.1.1 - Loss of load condition**

Frequency Response to Load Loss

Balanced Load/Generation Wind Units



- Frequency returns to its nominal value (60Hz)
- Maximum frequency excursion (60.08 Hz) within IEEE limits



#### **B.1.1 - Loss of load condition**

Generation Response to Load Loss

Balanced Load/Generation Wind Units



- Wind generation remains constant
- Main system absorbs the excess power



# **B.1.2 - Loss of generation condition**

Frequency Response to Generation Loss Balanced Load/Generation Wind Units



- Frequency returns to its nominal value (60Hz)
- Maximum frequency excursion (59.89 Hz) within IEEE limits



# **B.1.2 - Loss of generation condition**

Generation Response to Generation Loss Balanced Load/Generation Wind Units



- Wind generation remains constant
- Main system supplies the power deficit



# **B.1.3 – Short-circuit condition**

Voltage Response to three-phase S.C. at Bus H

Balanced Load/Generation
Wind Generation Units



- The voltage dip vary with distance from fault
- The voltages at buses B0, F, and G drop to 0.42 pu, 0.42 pu, and 0.1 pu



#### **B.1.3** – Short-circuit condition

Frequency Response to three-phase S.C. at Bus H

Balanced Load/Generation Wind Generation Units

INTERNATIONAL T&D



- Frequency returns to its nominal value (60Hz)
- Maximum Frequency excursion (60.7 Hz) exceeding IEEE limits



#### **B.2.1 – Short-circuit condition**

Voltage Response to three-phase S.C. at Bus H

Generation to load ratio 2/1 Wind Generation Units



- The voltage dip varies with distance from fault
- The voltages at buses B0, F, and G drop to 0.42 pu, 0.42 pu, and 0.1 pu



#### **B.2.1 – Short-circuit condition**

to Three-phase S.C. at Bus H
Generation to load ratio ½



- Frequency returns to its nominal value (60Hz)
- Maximum frequency excursions (61.2 and 58.9 Hz) exceed the IEEE limits



# **Detection of Island Formation**

- Distribution system response after separation
- DG types, operating conditions and penetration levels:
  - A. Distribution System with Hydraulic Units:
    - A.1 Self-Sufficient Condition
    - A.2 Under-Generating Condition
  - **B. Distribution System with Diesel Units:** 
    - **B.1 Under-Generating Condition**
  - C. Distribution System with Wind Units:
    - C.1 Under-Compensated Condition
    - C.2 Over-Compensated Condition

#### A.1 Self-sufficient condition

# Frequency Response to Islanding

Self-Sufficient Condition
Hydro Units Only



- Frequency variation is insignificant
- Island formation cannot be detected based on the frequency value



# A.2 Under-generating condition Two generators each producing 1.56 MW

Frequency Response to Islanding

Generation/Load Ratio 2/3



 Large variation in the frequency of 55.6 Hz, Island can be detected



# A.2 Under-generating condition with disabled governor

Frequency Response to Islanding - No Governor

Generation/Load Ratio 2/3



- Frequency decreases monotonically
- The frequency deviation exceeds the IEEE limits



# **B. Distribution System with Diesel Units**

#### **B.1** Under-generating condition

# Frequency Response to Islanding

Generation/Load Ratio ½
Diesel Units Only



- Small variation in the frequency (59.32 Hz)
   Island cannot be detected.
- Frequency returns to nominal value of 60 Hz



# C. Distribution System with Wind Generating Units

## C.1 Under-compensated condition

Voltage Response to Islanding Balanced Condition Wind Units Only



- Voltages decrease monotonically to zero
- The voltage exceeds IEEE limits for island formation



# C.1 Under-compensated condition

Real-Power Unit Response to Islanding Balanced Condition



 System voltage drops to zero and generator outputs also drop to zero



#### C.1 Under-compensated condition

to Islanding

Balanced Condition



- Constant wind, mechanical power remains constant
- System frequency (speed) increases monotonically



#### C.2 Over-compensated condition

Voltage Response to Islanding

Over-Compensated Condition – 0.43 MVAR



- Bus voltages increase monotonically
- Voltages exceed the limits for island detection



# **System Operation in Island Mode – Case 3**

Feasibility of Island Mode Operation:

# A. Distribution System with Hydraulic Units:

- A.1 Over-Generating Condition with Under-Damped Governor
- A.2 Over-Generating Condition with Generation/Load 10 MW/4.6 MW
- A.3 Under-Generating Condition with Generation/Load 1.5 MW/4.6 MW



## System Operation in Island Mode - Case 3 (cont.)

#### **B. Distribution System with Diesel Units:**

- B.1 Over-Generating Condition with Generation/Load 10 MW/ 4.6 MW
- B.2 Under-Generating Condition with Generation/Load 1.5 MW/4.6 MW

- C. Distribution System with Hydro and Wind Units
- D. Distribution System with Diesel and Wind Units



# A.1 Over-generating condition with underdamped governor

# Frequency Response to Islanding

Generation/Load Ratio 2/1

Unstable island





# A.2 Over-generating condition with generation/load 10 MW/4.6 MW

Frequency Response to Islanding Generation/Load 10 MW/4.6 MW









# A.3 Under-generating condition with generation/load 1.5 MW/4.6 MW

Frequency Response to Islanding Generation/Load 1.5 MW/4.6 MW

- The frequency excursion reaches 48.5 Hz
- Frequency is very close to the under-speed protection set at 48 Hz





# **B. Distribution System with Diesel Units**

# B.1 Over-generating condition with generation/load 10 MW/4.6 MW

to Islanding

Generation/Load 10 MW/4.6 MW

INTERNATIONAL T&D



- Maximum frequency 61.04 Hz
- Not large enough to trigger over-speed protection
  - System frequency returns to 60 Hz

# B.2 Under-Generating Condition with Generation/Load 1.5 MW/4.6 MW

Frequency Response to Islanding

Generation/Load 1.5 MW/4.6 MW



- Maximum frequency 58.9 Hz
- Not large enough to trigger over-speed protection
- System frequency returns to 60 Hz



#### C. Distribution System with Hydro and Wind Units

# C. Over-Generating Condition with Generation/Load 5.9 MW/4.6 MW

Frequency Response to Islanding Hydro Units 3 MW, Wind Units



- Maximum 66.3 Hz
- Not high enough to trigger protection
- Steady-state frequency 61 Hz



2.9 MW

#### D. Distribution System with Diesel and Wind Units

D. Under-Generating Condition with Generation/Load 3.9 MW/4.6 MW

Frequency Response
To Islanding

Diesel Units 1 MW, Wind Units 2.9 MW



- Maximum frequency variation 59.53 Hz
- Not low enough to trigger protection
- The system frequency returns to 60 Hz



# Conclusions

- Implementing distributed generation changes the way distribution systems are planned and operated
- Enhanced analytical tools capable of meeting the emerging requirements need to evolve
- CYME NRCan collaboration
  - Tool enhancement
  - Case studies
- Ongoing activities
  - Expanded DG model library
  - More case studies for illustration/education

