

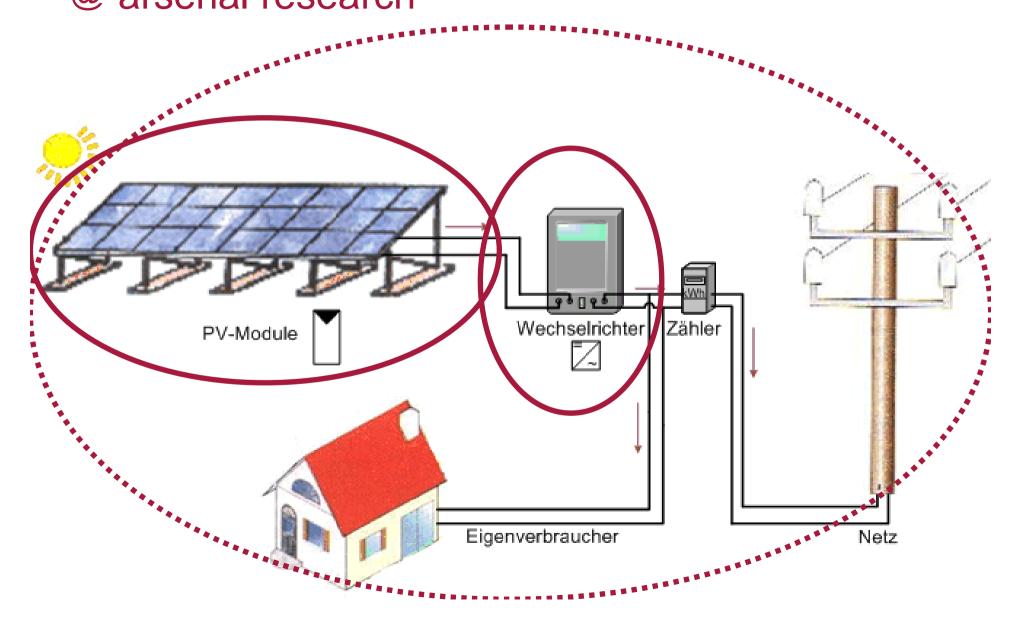
Qualifizierung von Fachkräften – Ausbildung zum PV Techniker und Planer

Dipl.-Ing. Andreas Lugmaier Dipl.-Ing. (FH) Gundula Tschernigg

5. Österreichische PV Tagung, 12/13 September 2007

Inhalt

- Kurzinfo PV relevante Aspekte @ arsenal research
- Überblick und Ziel des Kurses "Ausbildung zum PV Techniker und Planer"
- Inhalt und Beispiele des Kurses
- Erste Erfahrungen und Rückmeldungen des Kurses
- Zusammenfassung

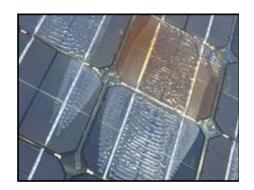


Inhalt

- Kurzinfo PV relevante Aspekte @ arsenal research
- Überblick und Ziel des Kurses "(Zertifizierte) Ausbildung zum PV Techniker und Planer"
- Inhalt und Beispiele des Kurses
- Erste Erfahrungen und Rückmeldungen des Kurses
- Zusammenfassung

PV relevante Aspekte @ arsenal research

PV relevante Tools und Technologien (Hard- und Software)



Photovoltaik-Modulprüfstand:

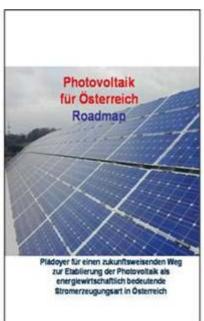
- Prüfung von PV-Modulen nach IEC 61215
 - Einfluss von mechanischen, thermischen und elektrischen Belastungen auf die Leistung und die Lebensdauer von PV-Module

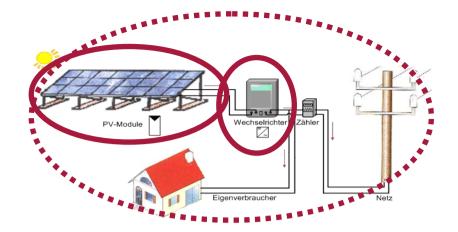
 Forschungs- und Entwicklungsbegleitung für PV-Hersteller

PV relevante Tools und Technologien (Hard- und Software)

Wechselrichterprüfstand:

- Prüfung von PV Wechselrichtern
 - Flexibler Photovoltaikfeldsimulator
 - Flexibler ein und drei-phasiger
 Netzsimulator
 - Voll automatisiertes Mess- und Prüfsystem


Weitere PV – Aspekte



- Internationale Forschungsprojekte bezüglich Alterung von PV Anlagen (IEA)
- Nat. und int. Normung (Module und WR)
- Strategische Arbeiten (Roadmap Austria)
- Nationale PV-Tagung (gemeinsam mit PV Austria)
- Technologieberatung für das BMVIT und Stadt Wien

Aktivitäten bilden Grundlage für qualifizierte Ausbildung!

Erneuerbare Energietechnologien

Inhalt

- Kurzinfo PV relevante Aspekte @ arsenal research
- Überblick und Ziel des Kurses "Ausbildung zum PV Techniker und Planer"
- Inhalt und Beispiele des Kurses
- Erste Erfahrungen und Rückmeldungen des Kurses
- Zusammenfassung

Überblick / Ziele des Kurses Ausbildung "(Zertifizierter) PV Techniker und Planer" An Enterprise of the Austrian Research Centers.

Hintergrund - Ausbildung

- Photovoltaik entwickelt sich ständig und sehr schnell weiter. Für Fachkräfte, die mit der Planung und Errichtung von PV-Anlagen beschäftigt sind ist es sehr wichtig, sich durch eine fundierte und laufende Ausbildung auf dem neuesten Stand zu halten
- Langjährige Zufriedenheit mit dem Produkt ist Voraussetzung für Erfolg einer Technologie!

Ziele der Ausbildung

- Qualifizierung von Fachkräften!
- Kompakter Zugang zu aktuellen Trends und Entwicklungen
- Unterstützung für den Einstieg in den Technologiebereich
- Zeichen hinsichtlich "Qualität"
- Technologievorsprung für Teilnehmer
- Marketingvorteil durch Zertifizierung

Ausbildungspartnerinstitutionen:

FEDERAL ASSOCIATION

Inhalt

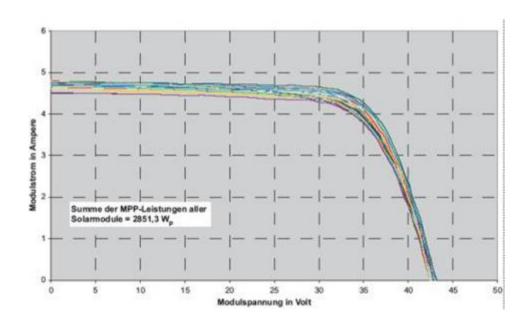
- Kurzinfo PV relevante Aspekte @ arsenal research
- Überblick und Ziel des Kurses "Ausbildung zum PV Techniker und Planer"
- Inhalt und Beispiele des Kurses
- Erste Erfahrungen und Rückmeldungen des Kurses
- Zusammenfassung

- 500 Seiten aktualisiertes Skriptum
- Ausdrucke der Präsentationen
- Qualitätsbroschüre; Praktikerbroschüre
- CD mit allen Daten
- Praktisches Anschauungsmaterial: Zellen, Module, WR etc.

Inhalt: 40 Stunden (Theorie)

Halbtage	Kursinhalt - Theorie	Dauer/LE	Vortragende
1	Einführung (Allgemein, Warum der Einsatz von Erneuerbaren Energieträgern)	1	Fechner
	Einführung (Entwicklung der Energieressourcen und des Energieverbrauchs im nächsten Jahrhundert, Situation in Österreich)	1	Fechner
	Einführung (Klimaziele, Energiequelle Sonne)	1	Fechner
	Unterschiedliche Arten von PV-Systemen	1	Fechner
2	Funktionsweise von Solarzellen und Photovoltaischer Effekt (Zellnarten)	2	Wind
	Die wichtigsten Komponenten rund um das PV-System (PV-Module), Gestaltungsmöglichkeiten von Modulen (4.1.1 bis 4.2.7 + 4.2.11)	2	Wind

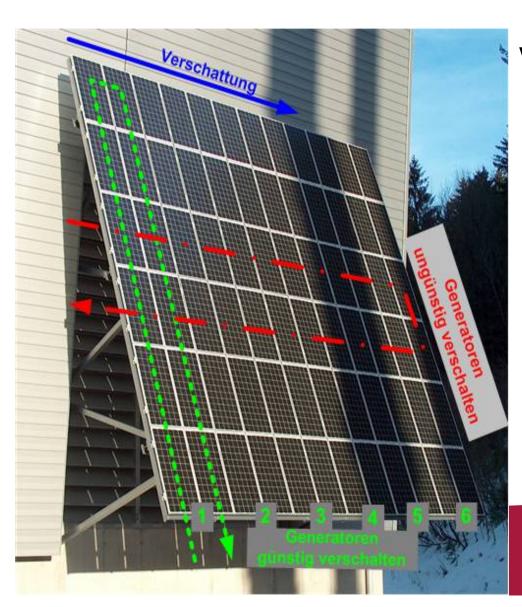
Inhalt: 40 Stunden (Theorie)



Halbtage	Kursinhalt - Theorie	Dauer/LE	Vortragende
3	Die wichtigsten Komponenten rund um das PV-System (elektrische Verschaltungsmöglichkeiten (4.2.8 - 4.2.12 - ohne 4.2.11)	2	Lugmaier
	Die wichtigsten Komponenten rund um das PV-System (Wechselrichter 4.3)	2	Bründlinger
4	Die wichtigsten Komponenten rund um das PV-System (Ausführung der Installationen)	2	Becker
	Die wichtigsten Komponenten rund um das PV-System (Akkumulatoren, Laderegler)	1	Becker
	Richtlinien	1	Becker

5	Planung und Auslegung von netzgekoppelten Anlagen		
	(Vorbereitung zur Planung, Anlagnkonzept, Auselgung des PV-	2	
	Generator)		Becker
	Planung und Auslegung von netzgekoppelten Anlagen		
	(Wechselrichterdimensionierung, Auslegung und	2	Becker
	Dimensionierung der Leitungen)		
	Planung und Auslegung von netzgekoppelten Anlagen (Auswahl		
	und Dimensionierung des Generatoranschlusskastens und des		
6	DC-Hauptschalters, Netzanschluss, AC-seitige	3	Becker
	Schutzeinrichtung, Zähleinrichtung, Blitzschutz, Erdung und		
	Überspannungsschutz)		
	Beispiel	1	Becker

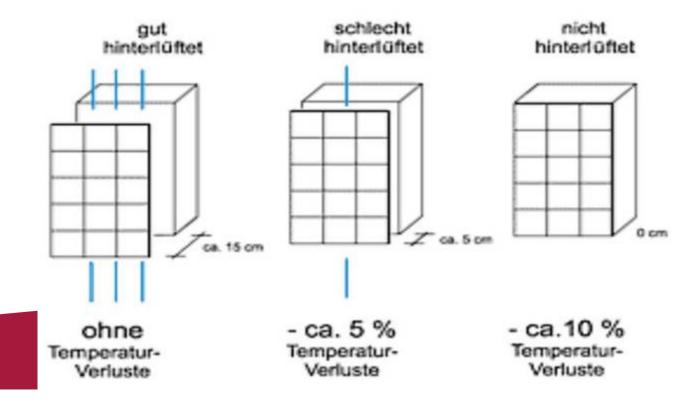
Inhaltliches Beispiel: Erträge



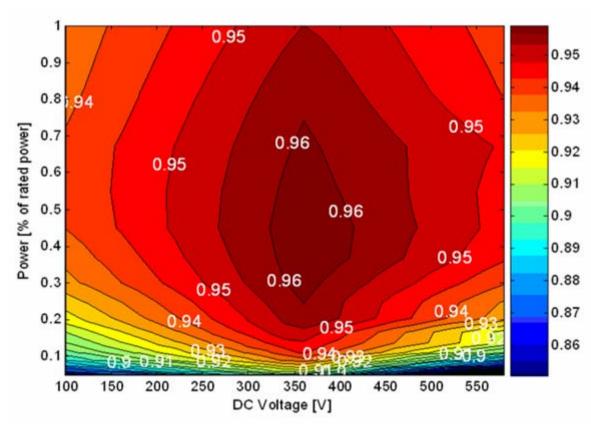
Mismatch-Verluste

- PV-Module haben verschiedene elektrische Werte im Toleranzbereich
- Serienschaltung (Strang)
 → es können Verluste im einstelligen %-Bereich auftreten.
- Im Vorfeld Sortieren!

Verschattung:


 Selbst kleine Abschattungen auf den Modulen können erhebliche Ertragsminderungen zur Folge haben.

Inhaltliches Beispiel: Erträge


Hinterlüftung

- Pro Grad Temperaturerhöhung liefern kristalline PV-Zellen etwa ein halbes Prozent weniger Leistung
- Hinterlüftung bietet Abhilfe

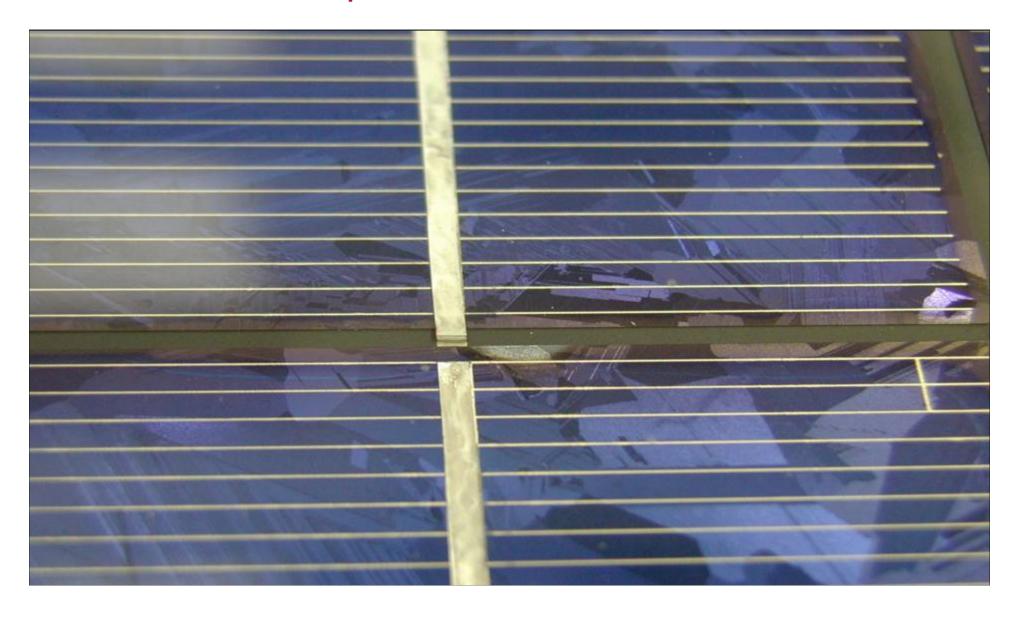
Inhaltliches Beispiel: Erträge Wirkungsgrad von PV Wechselrichtern in Abhängigkeit von P & Ue

Höchster Wirkungsgrad bei mittlerer Eingangsspannung

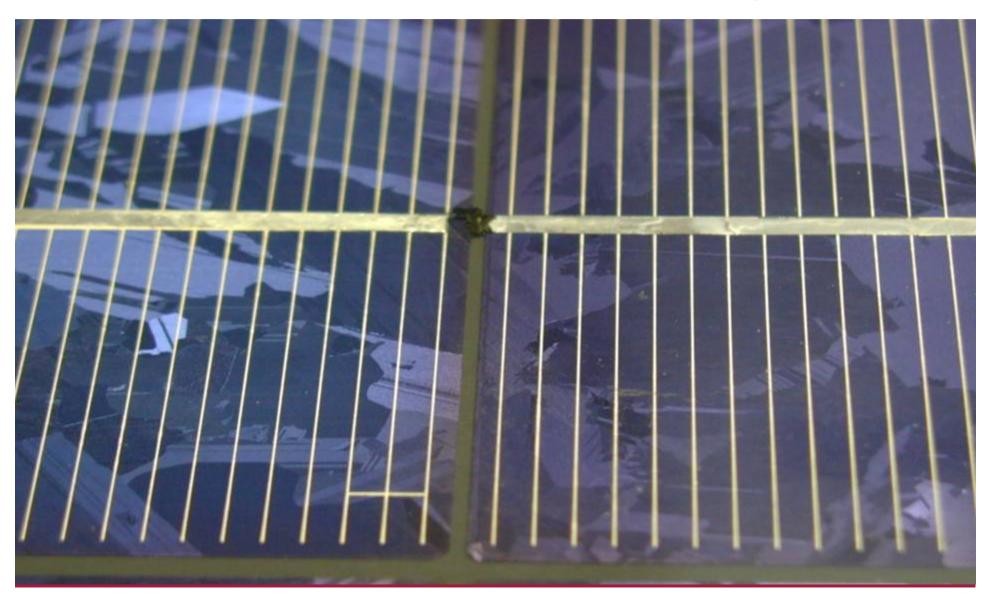
Inhalt: 40 Stunden (Theorie)

Halbtage	Kursinhalt - Theorie	Dauer/LE	Vortragende
7	Planung und Auslegung von Inselanlagen	3	Becker
	Beispiel	1	Becker
	T		Tai a a all
	Dimensionierung mittels Simulationsprogrammen	3	Triendl
8+9	Montagesysteme und Gebäudeintegration von PV-Systemen	3	Triendl
0+9	Installation und Anlagenerrichtung	2	Triendl
	Inbetriebnahme		
10	Funktions- und Ertragskontrolle	1	Becker
	Politische Rahmenbedingungen, Förderungen, Marketing und Verkaufsstrategien, Wirtschaftlichkeitsberechnung	2	Fallent
	Steuerliche Aspekte	1	Eßletzbichler

Inhalt: 8 Stunden (Praxis)



Halbtage:	Kursinhalt - Praxis	Dauer/LE	vorläufige Vortragende
	Arbeitssicherheit Strom/Dach	0,5	Becker
1 1	Montageaspekte	0,5	Becker
I	Aufbau der Kleinanlage	1	Becker
	Messungen an der Kleinanlage	2	Becker
	Sonnenkurve	1	Becker
2	Qualitätsaspekte	1	Becker
_	Fragen und Wiederholungen	2	Becker



Inhaltliches Beispiel: Zellverbinder vor 200 TZ

Inhaltliches Beispiel: Unterbrochene Verbindung nach 200TZ

Gleichstrom-Verkabelung

- Auch Verkabelung ist zum Teil extremen Bedingungen ausgesetzt.
- Auch hier sollten sehr hohe Qualitätsstandards festgelegt werden
 - z.B. Verwendung von doppelt isolierten Leitungen im DC-Bereich –
 Schutzklasse II
 - resistent gegen UV-Strahlung

Zertifizierung

- Zeichnet kompetente Fachleute aus!
- Stärkt das Vertrauen der Kunden

Arten der Zertifizierung:

- ISPQ Zertifizierung des Kurses seit April 2007
- Personenzertifizierung angestrebt

Voraussetzung zur Zertifizierung

- Kursteilnahme
- Erfolgreich abgelegte Abschlussprüfung
- Nachweis einschlägiger Ausbildung / Berufserfahrung
- Arbeitgeber ist konzessioniertes Unternehmen aus dem Bereich Energie- und Solartechnik
- 3 Musteranlagen mit maßgeblicher Beteiligung an Planung bzw. Installation
 - Ausgefüllter Fragebogen zu den Referenzanlagen
 - Dimensionierungsunterlagen zu den Anlagen
 - Schaltplan
 - Prüfprotokoll gemäß ÖVE ÖNORM E 2750
- Vertrag über Rechte und Pflichten

Zertifizierungsunterlagen

 Zusammengefasste Dokumente und Richtlinien für die Zertifizierung finden Sie unter:

www.arsenal.ac.at/eet

Inhalt

- Kurzinfo PV relevante Aspekte @ arsenal research
- Überblick und Ziel des Kurses "Ausbildung zum PV Techniker und Planer"
- Inhalt und Beispiele des Kurses
- Erste Erfahrungen und Rückmeldungen des Kurses
- Zusammenfassung

Bisherige Kurse

arsenal research An Enterprise of the Austrian Research Centers.

Termine:

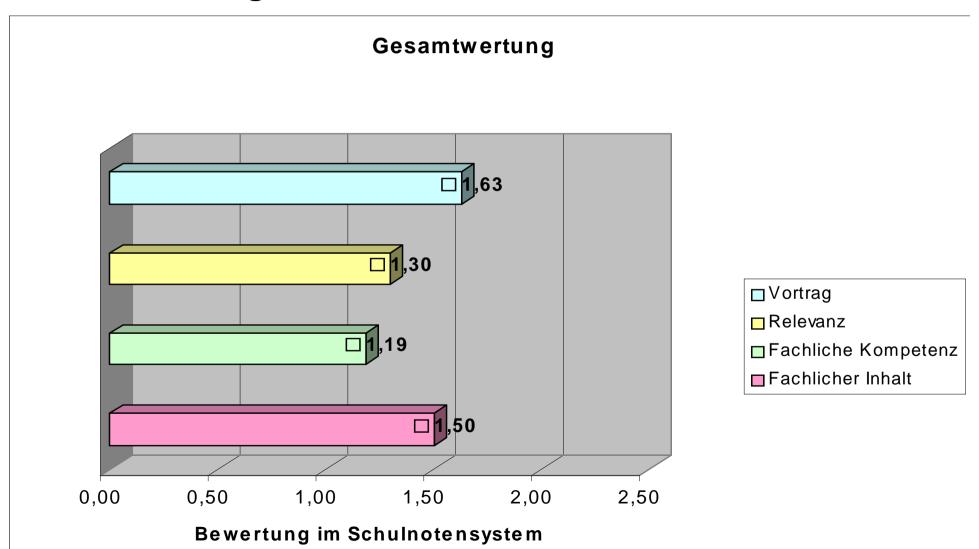
- Pilotkurs 15 Teilnehmer
 Herbst 2006
 - Prüfung: Herbst 2006
 - alle 10 Teilnehmer bestanden
- 1. Regulärer Kurs 14 Teilnehmer:
 Mai 2007
 - Prüfung: 29. Mai 2007
 - 12 von 13 Teilnehmern bestanden

Zukünftige Kurse

Termine:

- 27. bis 29. Sept. und4. bis 6. Okt 2007
- 4 weitere Kurse 2008
 - 21.02.2008 bis 23.02.2008 und28.02.2008 bis 1.03.2008
 - 17.04.2008 bis 19.04.2008 und24.04.2008 bis 26.04.2008
 - 04.09.2008 bis 06.09.2008 und11.09.2008 bis 13.09.2008
 - 13.11.2008 bis 15.11.2008 und
 20.11.2008 bis 22.11.2008

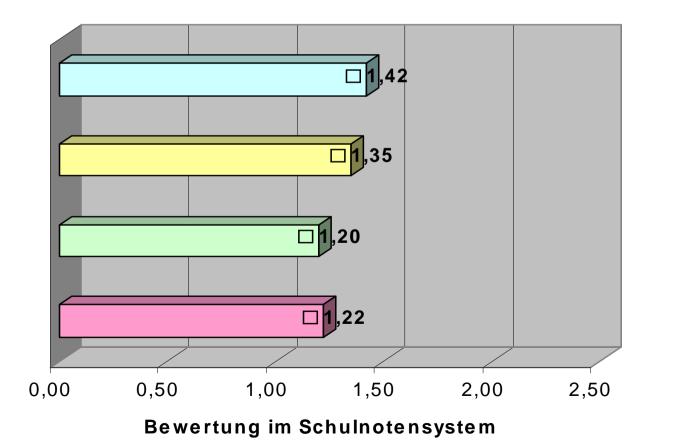
Qualitätssicherung in der Ausbildung


Kursbewertung, Zufriedenheit:

- Wir wollen den Kursinhalt noch besser an die Erfordernisse anpassen
- Wir wollen nur die besten Referenten f
 ür diesen Kurs
- Wir wollen die attraktivsten Kurstermine für die Teilnehmer
- Wir wollen ein qualitativ hochwertiges Kursskriptum mit dem Teilnehmer auch in der Praxis arbeiten

Ergebnisse: Qualitätssicherung

Kursbewertung Pilotkurs:



Ergebnisse: Qualitätssicherung

Kursbewertung 1. Kurs:

Gesamtdurchschnitt

□ Vortrag□ Relevanz□ Fachliche Kompetenz□ Fachlicher Inhalt

Inhalt

- Kurzinfo PV relevante Aspekte @ arsenal research
- Überblick und Ziel des Kurses "Ausbildung zum PV Techniker und Planer"
- Inhalt und Beispiele des Kurses
- Erste Erfahrungen und Rückmeldungen des Kurses
- Zusammenfassung

- Photovoltaik ist eine Technologie mit einer (sehr) langen Lebensdauer!
- Qualität und Ausbildung geben Sicherheit und sind relevant
 - für langfristige Erträge
 - und hohe Kundenzufriedenheit!
- arsenal research verfügt gemeinsam mit den Ausbildungspartnern über das notwendige Know-how!
- Die Ausbildung für PV Techniker und Planer rüstet die Österreichische Fachwelt für den zukünftigen Photovoltaikboom.

