

CO₂ Capture and Sequestration in Future International R&D Programmes: Summary Note

Guenter R. Simader

E.V.A., the Austrian Energy Agency

Vienna, 17th November 2004

Goals of the workshop

- Presentation of the state-of-the-art about latest European and International CCS technologies in order
 - to give orientation and guidance to international priority RTD topics
 - identify and assess future RTD potentials
- Overview about the opportunities and barriers of CCS RTD activities as possible technological option for future mitigation technology
- → To support the decison makers of industrial and public sectors, scientific bodies and NGOs in their future positions and decision making

1st Session: International R&D Programmes and Activities - I

- → IEA: CCS technologies are a serious, future CO₂ mitigation option among others having a significant potential for reducing GHG
 - Major challenges include RD&D gaps, public awareness and acceptance, the legal and regulatory framework, long-term policy framework and incentives
- **→** EU vision of energy sustainability include
 - The need for the security of energy supply (incl. the full range of available fuels (incl. FF and CCS)!)
 - The need to ensure EU industrial competitiveness (global competition for the European Industry mentioned)
 - Post-Kyoto strategies to be developed incl. the full range of technological options (CCS technologies)
- ➤ EU: Clear recognition for an international approach on the issue of global environment challenges and technology development (participation in CSLF, IEA,

1st Session: International R&D Programmes and Activities - II

- → COORETEC R&D for Zero-Emission Fossil-Fuelled Power Plants, 2-phase programme (incl. CCS in the 2nd phase)
 - Replacement capacity in Germany till 2020: 40 GW
 Potential of increasing power plant efficiency: + 15 20 %
 - Clear roadmap shown and key technologies to be developed
- **→ IEA GHG Program**
 - Confirmation of portfolio approach in order to decrease GHG emissions (with CCS as priority topic)
 - Major studies on covering the whole portfolio of CCS technologies, latest results were mentioned that indicate a clear cost decrease in CO₂ capture technologies
 - CCS is priority topic in the greenhouse gas programme
 - New R&D networks will be set up covering risk assessment and monitoring of CO₂ storage
 - Role of international collaboration for future RTD developments outlined (participation of Austria?)

- → CO₂ Sinks in oil/gas fields and aquifers (Prof. Heinemann)
 - Overview of world-wide CO2 storage activities and programs (presently over 70 projects)
 - Since 1950 EOR is an established technology
 - Austria: theoretical CO₂ storage volume in 11 oil/13 gas fields
 - ~ 465 MM t (final: 510 MM t)
 - Vienna Basin (OMV): 430 MM t; Molasse (RAG): 35 MM t
 - Cost estimation (incl. 30 km pipeline): 11 12,5 €t
 - Suggestion for a national CCS research project involving all major stake holders!
- GESTCO Project Geological "detailed" storage surveys incl. 8
 European countries (f. ex. storage capacity in hydrocarbon fields = 37
 Gt)
 - Development of a CO₂ storage GIS (matching sources and sinks) and Decision Support System (DSS) to evaluate the economics of CSS
- ➡ <u>Schlumberger:</u> Identification of challenges and risks of CO₂ subsurface storage, options concerning state-of-the-art technological and simulation models for monitoring procedures (conc. risk assessment, risk prevention for gradual or sudden release of CO₂ from a particular formation), virtual reality centers for improved "on-time" visualisation of stored CO₂

3rd Session: CCS Projects and Activities Key Messages - II

→ OPEC (Ms. Laura Atkins)

- CO₂ storage in depleting oil gas fields can significantly contribute to an increase of oil reserves (EOR = win/win situation)
- Description of geological storage potentials in general and with specific examples in particular (Sleipner, In-Salah, West Texas Permian Basin, Weyburn, etc.)
- Analysing the financing and policy issues (CDM could facilitate early implementation of CCS in developing countries) incl. gas flaring reduction initiatives

CO₂ Capture Project Update (Ms. Helen Kerr, BP)

- Joint industrial partnership in order to reduce costs of CCS technologies (several projects - over 100 contracts! - involving key technologies performed by key industries)
- Perform successful demonstration projects (incl. proof of concept, risk assessment studies, etc.), but still unsolved questions (f. ex. cap rock stability, storage stability in saline aquifers, etc.)
- Demonstration to external stakeholders that CCS is safe, measurable, and verifiable (f. ex. develop industry guidelines, etc.)

3rd Session: CCS Projects and Activities Key Messages - III

CASTOR Project – RAG

- Reduce the costs of post-combustion capture technologies (in coal-fired power plants, f. ex. Elsam in Denmark (cost goals: 20 to 30 €t)
- So far, field evaluations of Atzbach-Schwanenstadt field in Upper Austria (depth: 1600 m, reservoir pressure: 11 – 30 bar) achieve positive results, however present CO₂ prices do not justify CCS investments at this stage.

OMV: CCS an emerging business opportunity?

- Consideration/analysis of the CCS market in Austria (SWOT analysis, competing technologies to CSS, ...)
- Core competency is in the storage (not in capture and transportation technologies)
- Major remaining questions: CO2 a waste? CO2 stored or disposed? Long-term ownership of CO2 and liability issues? Long-term Monitoring and verification issues?
- Major business barriers exist (costs, legislation, image, uncertainties, etc.)

Summary

- CCS is a priority topic within the present and future(!) European and International RTD programmes and industrial activities
- → Analysis by leading energy experts show a huge storage potential for CO₂
- → A number of demonstration projects are presently carried-out to gain experience in practicability and other issues (f. ex. cap rock stability, CO₂ leakage, etc.)
- → International collaborations (beside of national and industrial activities) may be characterised as essential to spur the development and implementation process (development of Post-Kyoto technologies necessary)
- Major uncertainties still exist in the policy and legal frameworks (liability, etc.)
- → Major barriers were shown concerning the development/implementation of CCS as business opportunity for companies (f. ex. absence of commercial incentives)