

1

CO₂ Capture and Storage: A Promising Technology

Laura Atkins Energy Technology Analyst OPEC Secretariat

CO₂ Capture and Sequestration in Future International R&D Programmes Vienna N ovember 17, 2004

2

Introduction

- Fossil energy is expected to remain the predominant source of energy to meet growing world demand
 - Fossil fuels have been a driving force behind economic development
 - Over 1.6 billion people in the world today have no access to electricity, and over 2 billion don't have modern fuels for cooking and heating
 - Provision of modern energy, including fossil energy, is necessary to achieve Millennium Goal of poverty reduction
- Impact of GHG emissions on climate change has not yet gained wide undisputable scientific acceptance. However, the precautionary principle is often invoked.
- Technologies must continue to be developed to reduce GHG emissions from energy use.
- Sustainable development: Balance between economic growth, social progress, and environmental protection.

Benefits of Carbon Dioxide Capture and Storage

- At present and for the foreseeable future, there are few economically viable substitutes for fossil fuels.
- CO₂ Capture and Storage (CCS) has the potential to make huge reductions in emissions of CO₂ from stationary sources such as fossil fuel-fired power plants and industrial plants.
- Stationary sources contribute over 50% of global CO₂ emissions.
- CCS could provide 70% of the GHG emissions reductions necessary for stabilization of atmospheric CO₂ concentration in the medium to long term.

4

Global CO₂ Emissions by Sector in 2000

Source: World Energy, Technology, and Climate Policy Outlook, European Commission, 2003

CO₂ Capture and Storage Potential Contribution to Atmospheric Stabilization

Sources: Dolf Gielen, IEA/EET Working Paper, "The Future Role of CO2 Capture and Storage: Results of the IEA-ETP Model, 2003; EU World Energy, Technology, and Climate Policy Outlook, 2003;

IPCC Greenhouse gas emissions scenarios.

Benefits of Carbon Dioxide Capture and Storage

- At present and for the foreseeable future, there are few economically viable substitutes for fossil fuels.
- CO₂ Capture and Storage (CCS) has the potential to make huge reductions in emissions of CO₂ from stationary sources such as fossil fuel-fired power plants and industrial plants.
- Stationary sources contribute over 50% of global CO₂ emissions.
- CCS could provide 70% of the GHG emissions reductions necessary for stabilization of atmospheric CO₂ concentration in the medium to long term.
- CO₂ storage in oil reservoirs can substantially increase oil production and recovery through an enhanced oil recovery (EOR) process.

OPEC/WPC Workshop On CO₂ Capture, Storage and EOR; and Gas Flaring Reduction

- OPEC and the World Petroleum Congress see carbon dioxide and storage as a promising technology
- Workshop convened experts to discuss technology, current applications, future potential, and areas for cooperation
- In the end of each day, including:
 - CCS technology state-of-the-art and R&D programmes
 - > Case studies on CO_2 storage in saline aquifers and $CO_2 EOR$
 - > Policy, legal, and financing aspects of CCS and gas flaring reduction
 - Gas flaring reduction initiatives

7

OPEC Member Countries activities highlighted

CO₂ Capture & Storage Challenges

- The cost of CO₂ capture needs to be further reduced
 - Technologies have been available for years to remove CO₂ from sales gas streams, but these are costly
 - > If installed at a power plant, efficiency is reduced
- ✤ Issues related to geologic storage require more research
 - Technical issues related to monitoring, verification of storage and leak remediation
 - Legal aspects related to liability and long term ownership of storage sites
- Absence of commercial incentives
- Public awareness must be increased
- These are being addressed by various R&D programmes

CO₂ Capture and Storage State of the Technology (1)

Capture is the largest component of the cost of CCS

- Power plant post-combustion capture costs \$40 to \$100 per tonne of avoided emissions
- More concentrated CO₂ is less costly to capture but the technology is immature

Processes such as pre-combustion de-carbonization and oxygen burning promise to reduce costs

- R&D is expected to bring down the costs of all methods of capture. Three major programmes:
 - CO₂ Capture Project
 - > IEA Greenhouse Gas Reduction Programme
 - > US DOE carbon sequestration R&D

CO₂ **Capture and Storage State of the Technology (2)**

- Transportation and injection of CO₂ is relatively low cost
 - CO₂ has been transported by pipeline for many years in N orth America
 - CO₂ can be shipped in low pressure LPG vessels
 - Infrastructure requirements for large scale CO₂ capture and transport to geologic storage sites could be substantial
- For storage in geologic formations, monitoring, verification and long term storage are being addressed through technology development and demonstration projects
- However; the potential is huge

Comparative potentials at storage costs of up to \$20/t CO₂

Source: John Topper, IEA Greenhouse Gas Reduction Programme, presentation to the OPEC/WPC workshop 8th June 2004

Sleipner West Gas Field (1)

- Natural gas contains 4 to 9.5% CO₂
- Sales gas must contain less than 2.5%
- Large-scale offshore CO₂ capture

- Cost of injection facilities and well \$80 million
- One million tonnes per year injected into the Utsira Formation

Source: Mr. O. Kaarstad, Statoil, presentation to the OPEC/WPC workshop June 8, 2004

SLEIPNER WEST GAS FIELD (2)

Major R&D Results:

- EU-supported monitoring project (SACS)
- 3D Seismic indicates CO₂ is being contained in the reservoir
- Modeling studies used to predict future performance

Source: Mr. O. Kaarstad, Statoil, presentation to the OPEC/WPC workshop June 8, 2004

 Joint venture between Sonatrach (SH) and British Petroleum (BP).
Objective: Exploration, Appraisal, Development and Joint Marketing of ga produced from 7 fields of the region after its treatment.

The gas is treated by an Ethanol - Amine solution

The CO₂ is rejected by two amine regeneration trains

◆ The CO₂ is compressed through 4 compression stages up to a max of 200 bars

The CO₂ is injected into the Krechba aquifer
60 mmsdfd <=> 1.15 million tons/year
20 million tons of CO2 re-injected during the life of the project

Source: Ms. N. Boudjemaa, P.E., Sonatrach, presentation to the OPEC/WPC workshop June 8, 2004.

CO₂ Enhanced Oil Recovery

West Texas Permian Basin CO₂ EOR Projects

CO₂ Supply System

- CO₂ EOR projects have been in place for 30 years, using natural sources
- •About 1500 million ft³ per day injected (42.4 million m³/day)
- More than 50 active floods which contribute 20% of regional production.

Source: Mr. Leamon Hood, Oxy, presentation at the OPEC/WPC workshop on CCS, June 8, 2004

San Andres CO₂ Floods

Recovery Efficiencies (%OOIP)

a 🎦

Vrxufh=PulOhdprqKrrg/R{|/suhvhqvdwlrqdwvkh1R7SHF2ZSFFFVzrunvkrsMxqh;/5337

Weyburn CO₂ EOR Demonstration Project Saskatchewan, Canada

- The CO₂ is a purchased by-product from the Dakota Gasification Company's synthetic fuel plant in Beulah, North Dakota, USA
- CO₂ is transported through a 320-km pipeline to Weyburn.
- CO₂ injection into Phase 1A started
- September 15, 2000
 - 98 BCF (2776 M m³) CO₂ injected as of February 2004
 - Current CO₂ purchase is 105 mmscfd
 - 25 mmscfd of associated gas and CO₂ being recycled
- Incremental oil production 9000 bbl/day out of 22,000 bbl/day

Weyburn Unit Oil Production

CO₂ EOR Potential

- I26 gigatonnes of CO₂ storage in EOR Projects (IEA estimate)
 - Includes major basins in N. America, Europe, Middle East, Western Siberia
 - > More potential if Africa, Latin America, and Asia are included
- Win-win scenario of increasing oil supplies while storing large quantities of CO₂
- EOR can provide financial incentive for early implementation of CO₂ capture technologies, thus helping to bring down the costs
- Revenue from EOR can help support infrastructure investments necessary to transport CO₂ to other geologic storage sites

Possible North Sea CO₂ Infrastructure

- 30 40 million t/year CO₂ stored from power stations and factories around N. Sea basin
- 100 million bbl/year incremental oil
- Field life extended for 10 – 30 years

Source: Hugh Sharman, consultant, presentation to the OPEC/WPC workshop June 8, 2004.

Carbon Capture and Storage Financing and Policy Issues

- Supportive policies should be enacted and a legal framework developed
- Financial incentives for CCS are necessary
- The Clean Development Mechanism could facilitate early implementation of CCS in developing countries, if
 - It could accommodate large scale projects
 - It would recognize additionality and GHG reduction benefits of CCS

Gas Flaring Reduction

- Global gas venting and flaring is around 100 bcm/ year
- The fraction of gas that is flared has been greatly reduced over the last 20 years
- Individual governments and companies have had successes in reducing flared gas, and significant investments in reduction projects are continuing.
- The World Bank Gas Flaring Reduction Initiative supports national governments' efforts to reduce flaring
 - Helps commercialize small gas volumes
 - Facilitates cooperation on gas infrastructure and markets
 - Promotes use of gas for poverty alleviation

Gas Flaring Reduction Algeria Example

- Invested over \$660 million to reduce gas flaring
- While volumes of produced associated gases have practically quadrupled the 33 last years, the rate of flaring of associated gas decreased from 80% in 1970 to 11% in 2003.
- **Less than 1% of the of dry (non-associated) gas is flared.**
- In terms of total associated and dry natural gas, the flaring rate is less than 3%.
- Medium-term objective is to recover 93% of produced associated gas by 2007 and 100% by 2010.
- \$200 million has been allocated to additional gas flaring reduction projects.

Satellite Observation Showing Net Reduction of Flaring

September 24th, 1992

March 20th, 2002

Source : DMSP-OLS Observations of Gas Flares, Dr. Rabah Nadir Allouani, Sonatrach, presentation to the OPEC/WPC Workshop 9th June, 2004.

Gas Flaring Reduction Abu Dhabi Example

- Abu Dhabi rapidly reduced gas flaring after 1977 from 4000 mmfcd to < 500 mmcfd in the early 1980s, to < 300 mmcfd in the mid-1990s
- Since 1995 many new projects have been implemented to reduce flaring from 270 mmcfd to 70 mmfcd today. T his is only about 1% of the more than 6000 mmcfd gas production today
 - Reduced the number of flares
 - Re-injection of gas into oil reservoirs
 - Plants modified to recover gas
 - Zero flaring technology installed in some locations
- Flaring will be reduced to 30 mmcfd by 2007
- Goal is zero flaring

Source: Mr. Ihab Othamn Tarmoon, ADNOC, presentation to the OPEC/WPC workshop June 9, 2004

Gas Flaring Reduction Nigeria Example

- Over 40% of associated gas is flared
 - Down from 70% in 1996
 - The flared volume is enough to meet the electricity needs of sub-Saharan Africa
- Main challenge is limited domestic demand
 - Slow economic growth; underdeveloped local market
 - Lack of pipeline infrastructure
- Even so, domestic gas utilization has increased from 50 mmcfd in 2000 to 1000 mmcfd today.
- Gas gathering systems and use of associated gas to supply part of LNG feed are planned
- Policy is to eliminate gas flaring by 2008

Okpai Independent Power Project Overview

Category of the Project	Gas Flaring Reduction
Partners (Equity)	NNPC (60%) - NAOC (20%) -CONOCO PHILLIPS (20%)
Investments	~ \$400 million USD
Start-up	January 2005
Project life	20 years + 5 years (possible extension)
GHG reductions	1.8 million tonnes CO_2 per annum
Will be submitted as a CDM Project	

Source: Mr. Vito Caruso, Eni, presentation to the OPEC/WPC workshop 9th June, 2004.

Conclusions

- \bullet CCS has enormous potential to reduce CO₂ emissions.
- CCS is one of the lowest cost near to medium term options in terms of cost per tonne of avoided emissions, and costs will be further reduced through R&D.
- CCS would allow people to continue to benefit from the use of fossil fuels.
- CO₂ enhanced oil recovery can increase oil reserves and extend plateau production in mature oil fields while storing CO₂.
- Reduction or elimination of gas flaring can contribute to GHG reductions while bringing modern energy supplies to under-developed regions of the world.
- CCS, CO₂ EOR, and gas flaring reduction projects should be:
 - > Eligible for financial support, including CDM
 - Supported by appropriate legal and policy frameworks