GESTCO

European Potential

for the Geological Storage

of CO₂ from Fossil Fuel Combustion

Franz May

Bundesanstalt für Geowissenschaften und Rohstoffe

Photo: S. Stempfl

Shell

• BP

- Statoil
- Norsk Hydro
- TotalFinaElf
- Gaz de France
- BEB Exxon Mobile Production Germany
- Norwegian Petroleum Directorate
- UK Department of Trade and Industry
- Danish Energy Authority
- Vattenfall
- IEA Greenhouse Gas R&D Programme

Sub-contractors:

- Public Power Corporation of Greece
- French Geothermal Company (CFG)
- Danish Oil and Natural Gas Company
- CE-Transform (Netherlands)
- Tyndal Centre (UK)
- Vito Engineering (Belgium)

Inventory of major industrial Sources of CO₂

Aquifer Storage Capacity

Case study area	CO ₂ storage capacity (Gt)
Denmark, selected onshore & near shore aquifers	16
UK, southern North Sea	up to 14.7
Germany, onshore	20 ± 8
Norway, off-shore traps	13
Netherlands on- and off-shore	1.6
Greece, on- and off-shore	2.2
Campine Basin, Belgium	0.1
Paris Basin	0.66

Salt and Coal Mines

Salt mines: - little capacity - conflicts - safe (30 Mt) (toxic waste) (shaft seals)

D)

Coal mines:

imes (F, GB, Ł residual coal

nflicts of u. ctured overb. Now depth

ocertain

gas, coal mining) area) lensity)

Deep unminable Coal Seams, ECBM

CO₂ injection

CBM production

clastic sediments coal seam

Figure 9. Coalbed methane reserves in the Campine Basin (after Van Tongeren et al. 2000).

Uncertain ECBM Potential and Storage Capacity

CO₂ storage and ECBM potential in the Netherlands up to 1500 m depth

The GESTCO GIS -- matching sources and sinks

BGR Bundesanstalt für Geowissenschaften und Rohstoffe

GESTCO Decision Support System (DSS)

GEOZENTRUM HANNOVER

Capture Cost Analysis

GEOZENTRUM HANNOVER

und Rohstoffe

Case Study Greifswalder Bodden

GEOZENTRUM HANNOVER

Case Study Greifswalder Bodden

Geological Structure

Case Study Greifswalder Bodden

Geochemical modelling

GEOZENTRUM HANNOVER

ind Rohstoffe

Public Acceptance

importance of mass media

CO₂ eruption in potassium mine Marx-Engels

protected natural CO₂-source

