Advanced Biogas Processes applied in Fuel Cell Systems

ao.Univ.Prof. DI Dr. Peter Holubar

Workshop Hydrogen and Fuel Cells in a future sustainable Energy-system

31.3.-01.05.2004 Vienna

Institute of Applied Microbiology

Content

Why Monitoring & Control The Black Box "Anaerobic Digestion" Neural Network Modeling Fuzzy Logic Controller Modeling of Trace Gases Balance for Biogas Plant

Institute of Applied Microbiology

<section-header><section-header><section-header><section-header><section-header><image><image><image><image><image>

Fuel Cell - Effect of Trace Gases

Fuel cell	PEFC	PAFC	MCFC	SOFC
Operating T. (°C)	70-90	160-210	600-700	800-1000
H2	Fuel	Fuel	Fuel	Fuel
CO2	Dilutent	Dilutent	Re-circulated	Dilutent
CO	Toxic	Toxic	With water shifted to H2	With water shifted to H2
C2-C6		Toxic	Fuel, plugging & coking	Fuel, plugging & coking
Sulfur		Toxic	Toxic (< 1 ppm H2S)	Toxic (1 ppm H2S)
NH3		Toxic	Fuel or inert?	Fuel (< 5000 ppm)
Halogens		Toxic	Toxic (< 0,1-1 ppm)	Toxic (1 ppm)
Alkali metals			Electrolyte loss (1-10 ppm)	

Institute of Applied Microbiology

23

Π	<i>l</i> odelir	ng Sulfate-Reduction by ADM Parameters	/1	
4 types of metabolic reactions	ρ20 X5: ρ21 X6:	$C_3H_7COOH + 0.5 SO_4^2 \rightarrow 2 CH_3COOH + 0.5 S^2$ 100% butyrate COD → 80% acetic COD + 20% sulfide COD $C_2H_5COOH + 0.75 SO_4^2 \rightarrow CH_3COOH + CO_2+H_2O + 0.75 S^2$ 100% propionate COD → 57% acetate COD + 43% sulfide COD		
(X5-X8)	ρ22 X ₇ . ρ23 X ₈ :	CH ₃ COOH +SO ₄ ^{2·} → 2 CO ₂ + 2 H ₂ O + S ^{2·} 100% acetate COD → 100% sulfide COD 4 H ₂ + SO ₄ ^{2·} → S ^{2·} + 4 H ₂ O 100% hydrogen COD → 100% sulfide COD		
Parameter	Value	Range from literature*		
km ac (COD.COD ⁻¹ .d.	⁻¹) 35	0.14 - 52 ¹	-	
Ks_ac (kg COD.m ⁻³	, 0.03	$0.011 - 0.93^{1}$		
Y _{X5} (COD.COD ⁻¹)	0.12	0.0329 ²		
Y _{X6} (COD.COD ⁻¹)	0.12	0.0329 ²		
Y _{X7} (COD.COD ⁻¹)	0.12	0.0342 ²		
Y _{X8} (COD.COD ⁻¹)	0.12	0.0366 $(COD.COD^{-1})^2 - 13 (g cell mat.mol H_2^{-1})^3$		
K _{H_h2s} (M.bar⁻¹)	0.04	0.0952 ⁴ Can differ a factor 2 or 3 ⁵	_	
(1) Batstone et al. 1996; (5) Mackay an	, 2002; (2) Fe d Shiu, 1981	edorovich et al., 2003; (3) Badziong and Thauer, 1978; (4) Stumm and Morgan,	
		Institute of Applied Microbiology	24	

hydrogen sulfide-production

Financial Ba	nance of	wonnoring & C	ontrol o	
Basic assumption				
Reactor volume	300 m ³			
Investment expenses	200 €m ⁻³			
Operation expenses	18.000€	(includes depreciation, insurance, servicing, wages, energy cos		
Energy content of biogas	6 kWh m ⁻³			
Electricity output	1.92 kWh _{el} m ⁻³			
Market price electricity	16 Cent ⁻ kWh ⁻¹			
Revenues				
Monitoring		No	VFA (Lange)	external laborat
Control		minimal	optimized	Optimized
Biogas yield	m ³ ·m ⁻³ _{reactor} ·d ⁻¹	1.2	2.5	2.5
Biogas yield	m ^{3.} a ⁻¹	131.400	273.750	273.750
Energy content	kWh [.] a⁻¹	788.400	1.642.500	1.642.500
Electricity output	kWh _{el} a ⁻¹	252.288	525.600	525.600
Sales revenues	€a ⁻¹	40.366	84.096	84.096
Costs				
Working hours	h'd ⁻¹	-	0.6	0.5
Person hours	h·a ⁻¹	-	219	182
Wages (15 €h ⁻¹)	€a ⁻¹	-	3.285	2.730
Consumables	€a ⁻¹	-	3.281	20.440
Depreciation for lab- equipment	€a ⁻¹	-	1.335	750
Σ Operation expenses	€a ⁻¹	18.000	18.000	18.000
Σ costs per year	€a ⁻¹	18.000	25.900	41.920
Profit & loss account	€a ⁻¹	22.366	58.196	42.176

