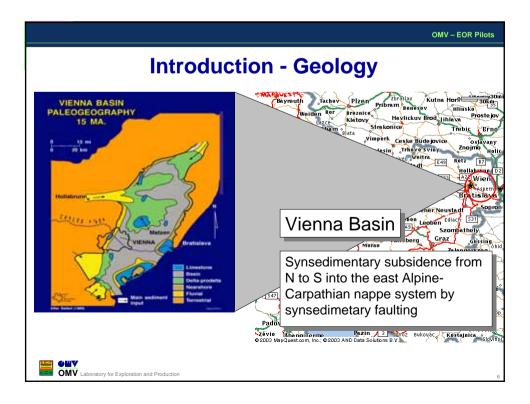
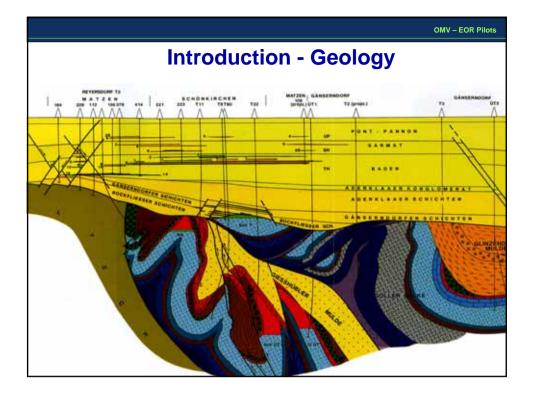
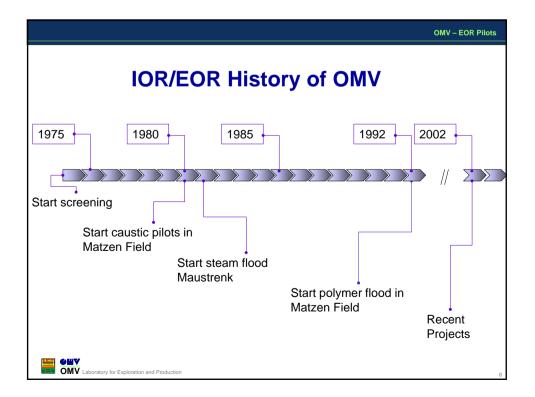


		OMV – EOR Pilots				
	Participation in IEA					
Wo	rking Party: Fossil Fuels					
Anr	laborative Project on Enhanced Oil Recovery nual Workshop & Symposium sks for IEA Workshop					
A	Studies of Fluids and Interfaces in Porous Media					
В	Fundamental Research on Surfactants and Polymers					
C	Development of Techniques for Gas Flooding					
D	Thermal Methods					
E	Dynamic Reservoir Characterization					
F	Emerging Technologies					
Тор	Topic for Symposium: organizer's choice					
	r Exploration and Production	2				

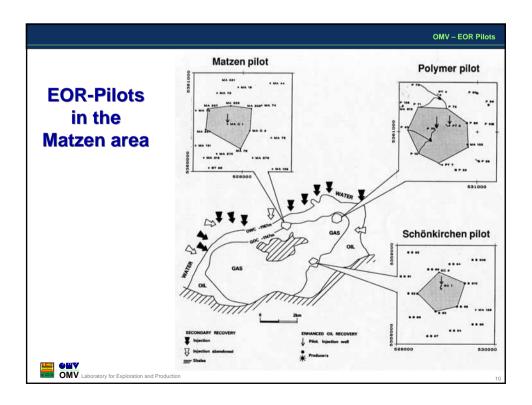
Presentations at Workshops and Symposia

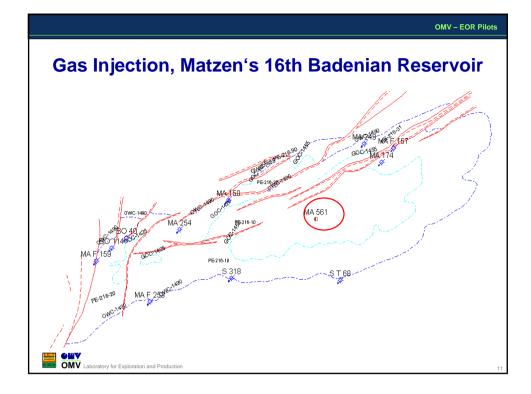

Year	Venue	Author	topic
1984	Paris	H. Schmied et al.	Method of Investigations for CO ₂ -Flooding Processes
1988	Fredensborg	N. Philippovich et al.	Water Core Flooding for Polymer EOR- Investigations: Effect of Core Aging, Oil Type and Test Conditions
1988	Fredensborg	L Bräuer et al.	High Pressure Flood Experiments with CO2 and Automatic Data Acquisition
1989	Stanford	N. Philippovich et al.	Laboratory Tests for a Proposed Polymer Pilot
1991	Bath	G Rauth	Evaluation of Directional Permeabilities in a Polymer Pilot Area by Pulse Testing
1991	Bath	E Rieder	Selection of a Pilot Area in the Oil field Matzen and Measures to Develop a concept for Polymer Flooding
1993	Salzburg	N Philippovich	Polymerflooding in the Matzen Oil Field
1993	Salzburg	E Rieder	A Review of IOR-Activities in the Vienna Basin
1994	Bergen	N Philippovich	Final Analysis and Consequences of the Matzen Polymer Project
1997	Copenhagen	K. Potsch	Experimental Evaluation of Condensate Drop Out
1998	San Francisco	N. Philippovich	Injection Water Treatment: Problems and Experiences
1999	Paris	U. Bregar	Reservoir Engineering Aspects of Cyclic Gas Storage as a Tool of Improved Oil Recovery
2000	Edinburgh	N. Philippovich et al.	Water Conditioning for IOR: Field Implementation
2001	Vienna	N. Philippovich et al.	Watered-out Wells: Experiences with Sodium Silicate as Plugging Material
2001	Vienna	K. Potsch	Mobilizing the Liquid Drop-Out of Condensate Reservoirs
2002	Venezuela	K. Potsch et al.	Selecting Hochleiten Field for EOR
2003	Regina	K. Potsch et al.	Gas Injection Pilot in the Hochleiten Field

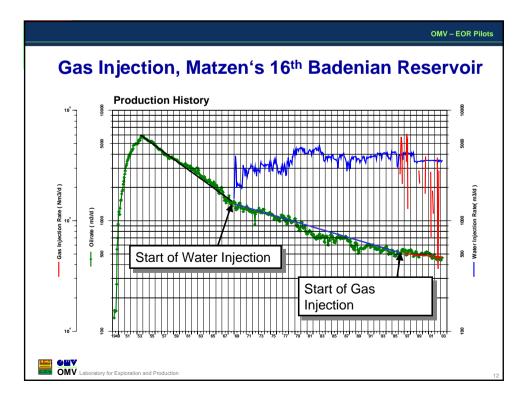


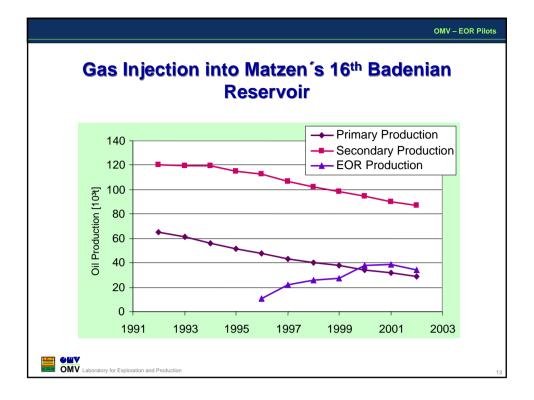

OMV's Oil Production

	2002		2003	
production	t	%	t	%
primary	456,000	53.4	483,800	56.7
secondary (IOR)	350,000	41.0	301,800	35.3
tertiary (EOR)	48,000	5.6	54,400	6.4
	854,000		840,000	


ONV Laboratory for Exploration and Production







effect μ_{o} reduction IFT reduction μ_{w} increase gravity drainage gravity drainage μ_{o} swell	CO ty drainag
effectImage: second systemImage: second systemImage: second systemgravity drainagegravity drainagegr	y drainag
effect Image: Constraint of the system Image: Constand of the system	
effect μ₀ reduction IFT reduction μ₀ increase gravity drainage gravity drainage swel field Maustrenk Matzen Matzen Matzen St. Ulrich/Hausk. He horizon Schlierbasis 10THB 9TH 16TH 12SH, IOIP 10 ⁶ t Image: Comparison of the system 1.42 19 53.4 22.3 IGIP 10 ⁶ t Image: Comparison of the system - - 2342.3 6777 45.4 year Image: Comparison of the system 1980 1992 1996 1993	
Maustrenk Matzen Matz	o reductio
horizon Schlierbasis 10THB 9TH 16TH 12SH, IOIP 10 ⁶ t 1.39 1.42 19 53.4 22.3 IGIP 10 ⁶ t 10 ⁶ t 1.39 1.42 19 53.4 22.3 IGIP 10 ⁶ t 10 ⁶	elling of o
IOIP 10 ⁶ t Image: Constraint of the state of the st	Hochleite
IGIP 10 ⁶ t - - 2342.3 6770 45.4 year - 1981 1980 1992 1996 1993	
year 1981 1980 1992 1996 1993	1.25
rel. oil density 0.898 0.924 0.928 0.905 0.86	200
darath = 0.00 = 0.00 = 1455 = 1470 = 0.00	0.93
depth mSS ~630 ~1330 1155 1470 ~893	~80
permeability mD 150 500-3000 300 960/708 0.25-1.54 1 porosity % 24 26-31 24.9 26 0-14.2	149-276
thickness m 20.9 3.9 4.3 15.3 136.1	2-4.2
injection rate m³/d 160 0.533-0.76	526
efficiency m ³ /t 17.5 71Sm ³ /t	020

OMV – EOR Pilo
oplication of EOR today?
2. Lack of Strategic Planning
3. Mentality or Culture
 ? A mindset that does not include EOR ? Top management attitude and support ? Lack of government support and strategic view ? Concern about the return of low oil prices ? Acceptance of EOR as a best practice
5. Uncertainty / Risk ? Oil price volatility

	OMV – EOR Pilots
	should be done ?
1. Create Tax Incentives	 2. Strategic Thinking ? Developed long term strategic views shared by government and industry ? Developed innovative business schemes / models ? Master plan for natural resources which includes EOR
3. Developed Effective Partnershi ? Government ? industry, opera ? Joint technology development	
 4. Provide Education ? Industry ? Academia 	n and Training
5. Value Sequestered CO ₂	 6. More Successful Projects ? Document successful projects / Pilots ? Improved surveillance
OMV Laboratory for Exploration and Production	15

