

Smart Grids zur Reduktion von Backupkapazitäten im Stromversorgungssektor

Smart Grids 2.0 Workshop; 17.06.2014
Wolfgang Prüggler, Gerhard Totschnig, André Ortner

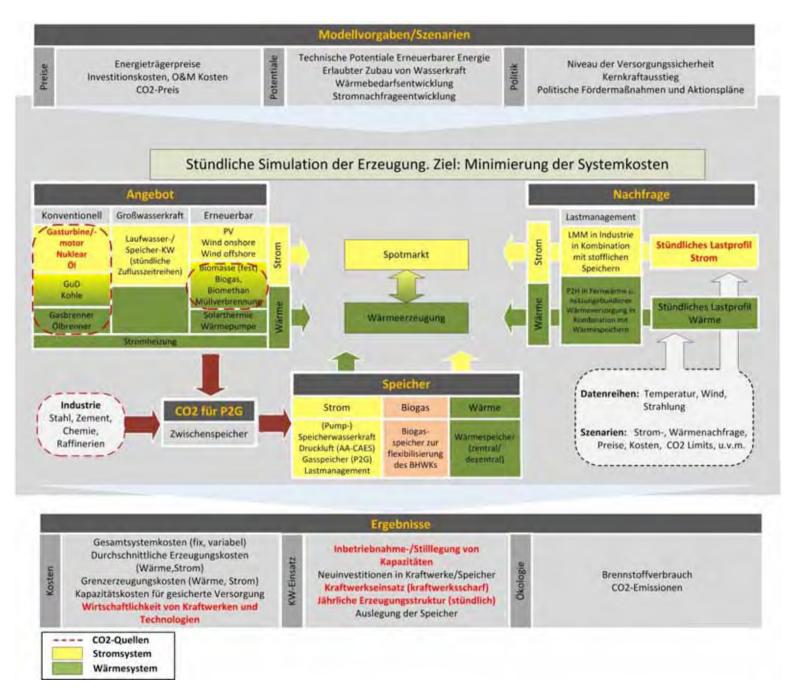
Diese Studie wird aus Mitteln des Klima- und Energiefonds gefördert und im Rahmen des Programms "Energy Mission Austria" durchgeführt.

Fragestellung der Studie

In welchem Umfang müssten Smart Grids die Elastizität der Nachfrage steigern können (z.B. durch automatisierte Laststeuerung oder intelligenten Speichereinsatz), um signifikante Effekte zur Reduktion zukünftig notwendiger Backupkapazitäten an den Strommärkten (z.B. an der EEX) zu erreichen?

Agenda der Präsentation

- 1. HiREPS Simulationsmodell
- 2. Hauptannahmen der Modellläufe
- 3. Implementierte LMM Maßnahmen
- 4. Szenarioüberblick
- 5. Ergebnisse Szenario A
- 6. Schlussfolgerungen



HiREPS Simulations modell

High Resolution Power System Model

- Analyse des zukünftigen Energiesystems mit hohem Anteil an Erzeugung aus Erneuerbaren Energien
- Investitionsoptimierung zur optimalen Auslegung verschiedener Systemkomponenten
- Gemeinsame Betrachtung des Strom- und Wärmesektors (Synergieeffekte)
- Stündliche Kraftwerkseinsatzsimulation zur Analyse der ökonomischen und technischen Machbarkeit verschiedener zukünftiger Szenarien

- 88 Mill, t CO2 für Strom- und Wärmesektor in AT+DE
- 88% Reduktion der spezifischen CO2 Emissionen im Vergleich zu 2011 auf 52 gCO₂/kWh
- Zunahme des Strombedarfs um 22%
- Detailmodellierung: Wasserkraft, Windkraft, PV, Biomasse

	Einheiten	2010	2020	2030	2050	2050/2010
Kohle	€2010/MWh_LHV	7.1	9.4	17.6	19.6	2.8
GAS	€2010/MWh_LHV	18.3	29.7	41.2	57.5	3.2
ÖL	€2010/MWh_LHV	29.7	46.6	55.1	74.1	2.5
Strom- verbrauch AT+DE	TWh	616	638	661	749	1.22

- Wasserkraft:
 - Kein Neubau von Speicherseen
 - Leistungen bestehender Speicher- und Pumpspeicherkraftwerke können ausgebaut werden
 - Gänzlich neue Nutzungsmöglichkeiten bestehender Speicher nicht vorgesehen

Windkraft:

- Analyse Daten des Numerischen Wettermodells des DWD
- Onshore-Windenergiepotential in AT+DE 200 GW
- 3 MW Enercon E101 an allen geeigneten Standorten (>2000h/a, <1200m NN)
- 12% Verluste (7% Verfügbarkeit + Elektr. Verluste + Vereisungsverluste + 5% Windparkverluste)

- Photovoltaik:
 - Meteosat Satelliten Messdaten von Direkt- und Diffusstrahlung
 - 30° geneigte Module nach Süden ausgerichtet
 - 30% Verluste (14% Systemverluste, 4% Reflexion, Schnee, Abschattung, Verschmutzung, 6% Temperaturverluste, 6% Degradierungsverluste für Mix)

Biomasse:

- Maximal 90 TWh in AT+DE zur energetischen Nutzung von Biomasse
- Davon 25% für Biomethan- oder Biogas-Potential nutzbar
- 70% des Biogases wird zu Biomethan aufgearbeitet, der Rest in Gasmotoren verstromt
- 2/3 des Biogaspotentials kann bei der Verstromung auch > 70% der Abwärme als nutzbare Wärme auskoppeln

 Entwicklung des Wärmebedarfs in TWh in Österreich und Deutschland bis 2050 in den SG Backup-Szenarien

DE+AT TWh thermisch	2010	2020	2030	2040	2050	2050/2010
Dezentrale Wärmebereitstellung	818	697	585	504	459	0.56
Fern+Nahwärme	118	155	181	187	170	1.43
Summe	936	852	766	691	628	0.67

Implementierte industrielle LMM Maßnahmen

		Aktivierbare	Max. Dauer		
LMM	Installierte	Leistung im	Lastabwurf /	Тур.	Produktions
Technologie	Leistung	Modell	Speichergröße	Größe	-ausgleich
Aluminium	1035 MW	657 MW	2h	10 MW	ja
Zement	735 MW	305 MW	29 GWh	2 MW	ja
Stahl	1566 MW	1566 MW	4h	30 MW	ja
Holzstoffe	308 MW	308 MW	1,35 GWh	1 MW	ja
Chlor	3006 MW	3006 MW	8 GWh	14 MW	ja
	Summe	5,84 GW			

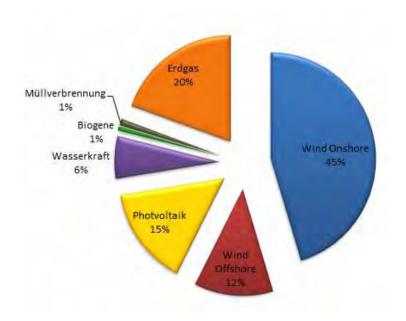
Szenarioüberblick

		Allge	mein		Industrie			P2H				
Szenario Name: → Im Szenario genützte LLM Optionen: ↓	A	В	С	D	Е	F	G	Н	I	J	K	L
LMM Optionen:												
Alle Industrielle LMM Optionen Nur Lastmanagement Stahl	Х		X		Х					Х	X	X
Nur Lastmanagement Alu						X						
Nur Lastmanagement Zement							X					
Nur Lastmanagement Holz								X				
Nur Lastmanagement Chlor									X			
P2H Optionen:												
Alle P2H Optionen gesteuert	X	Х			Х	X	X	X	X			
P2H in der Fernwärme			X	X						Х	X	
gesteuerte Wärmepumpen										Х		
gesteuerte Stromheizregister											X	

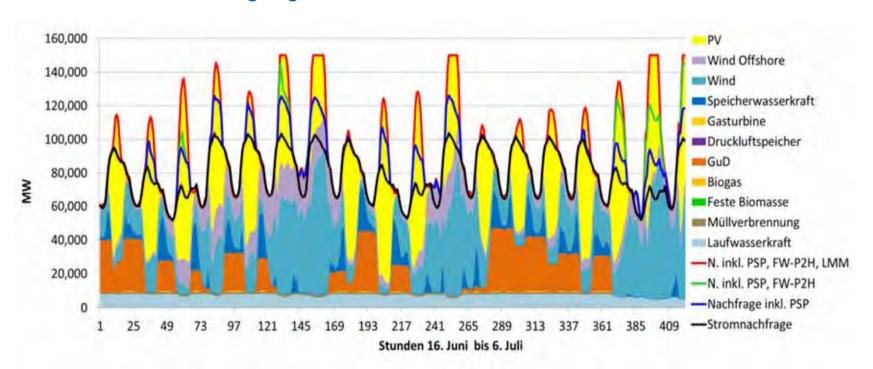
Ergebnisse Überblick

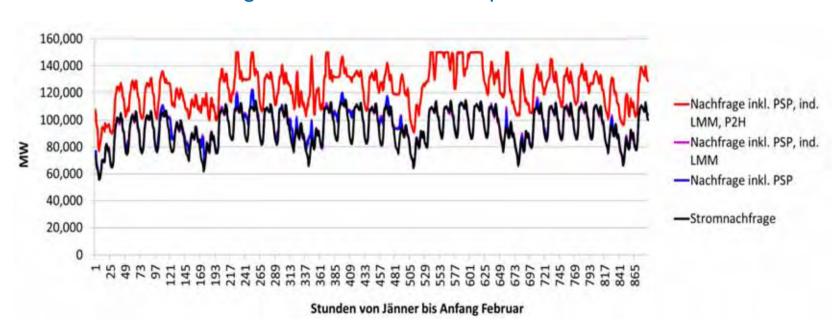
Jährliche Systemkosten, gesicherte Leistung und Szenarieneffekte

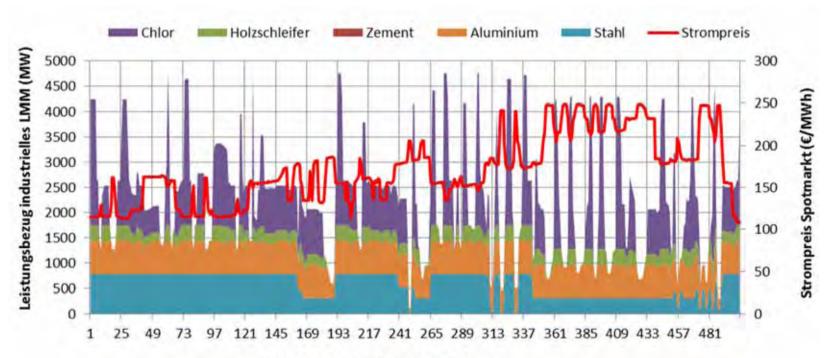
Szenario	Gesamtkosten Strom+Wärme	CO2 Preis	Erforderliche gesicherte Leistung	Kosteneinsparung gegenüber REF	Reduktion der gesicherten Leistung
	[Mrd. €]	[€/tCO2]	[GW]	[Mill. €]	[MW]
			Allgemeine Szenarien		
Α	97,1	167,6	144,4	3812,1	7124,6
В	97,5	169,9	147,5	3470,1	4040,8
С	100,5	181,3	148,0	407,9	3559,2
D	100,9	182,2	151,5	0,0	0,0
		Detail-Szenarier	n Industrielles Lastmanagement	(LMM)	
Е	97,4	169,5	147,1	43,5	353,7
F	97,5	169,7	147,4	12,9	108,9
G	97,4	169,3	147,5	33,6	0,0
Н	97,5	169,6	147,4	19,9	113,6
I	97,3	168,5	145,1	215,7	2320,2
		Detail-S	Szenarien Power-to-Heat (P2H)		
J	98,0	179,0	145,7	2909,6	5803,6
K	99,6	181,4	146,3	1384,9	5181,7
L	102,2	204,3	148,5	-1288,4	2999,6



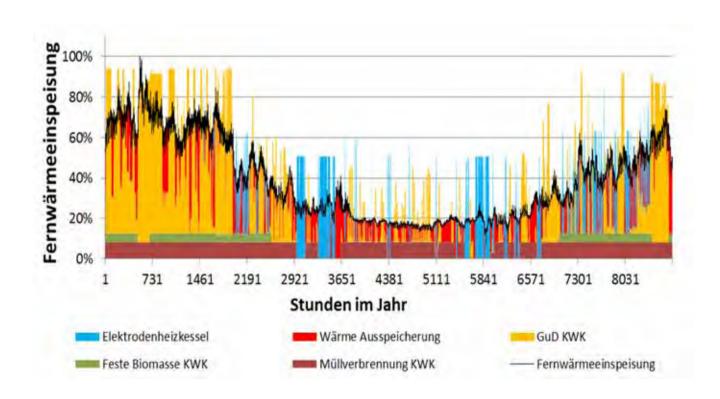
Stromerzeugungsmix (Szenario A) Gesamterzeugung in Österreich und Deutschland 2050


	Installierte Leistung [GW]	Jahreserzeugung [TWh]	Volllaststunden
Wind Onshore	200	415	2074
Wind Offshore	29	111	3866
Photvoltaik	167	137	823
Wasserkraft	38,2	59,0	
Feste Biomasse	1,0	3,5	3489
BioGas	0,7	1,8	2660
Müllverbrennung	1	9	6872
GuD	77	177,7	2317
Gasturbinen	43	1,04	24

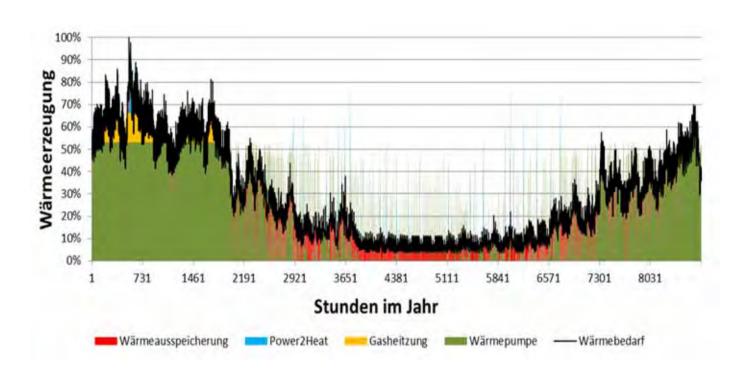

Stündliche Stromerzeugung 16. Juni bis 6. Juli für Österreich und Deutschland 2050

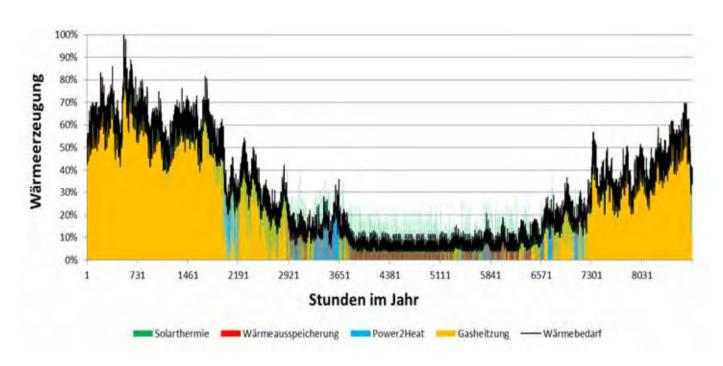

Stündliche Stromnachfrage Jänner bis Anfang Februar für Österreich und Deutschland 2050 aufgeschlüsselt nach Komponenten

Stündlicher Strombezug der industriellen Anlagen mit LMM von 17. Jänner bis 6. Februar für Österreich und Deutschland 2050

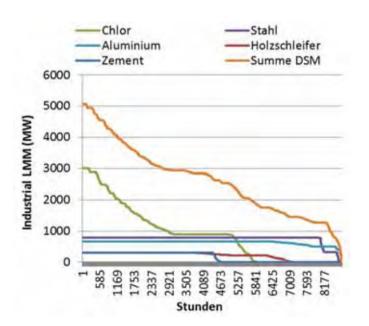


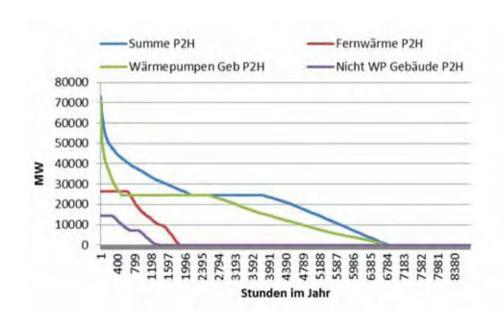
Stunden von 17. Jänner - 6. Februar


HiREPS-Simulation der Fernwärmeerzeugung für Österreich und Deutschland in 2050 (P2H Maßnahmen in blau).


Simulation für große Gebäude, die für Wärmepumpen geeignet sind und zusätzlich einen Gasspitzenlastkessel haben (Gebäudekategorie 1)

Simulation der Wärmeerzeugung bei gasbeheizten Gebäuden, die nicht wärmepumpengeeignet sind (Gebäudekategorie 2)

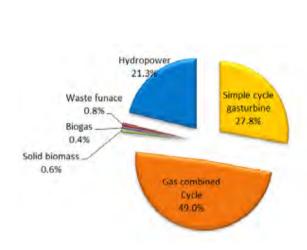


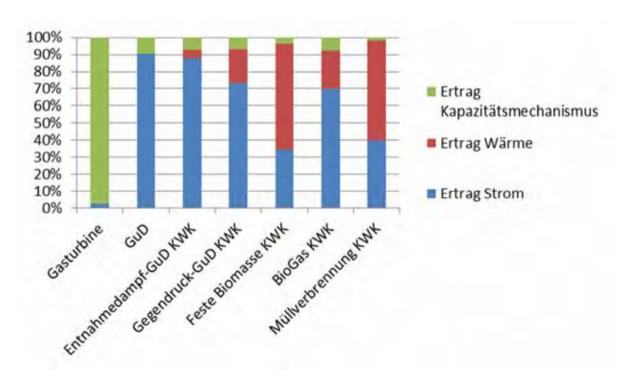


Lastdauerlinien der LMM-Maßnahmen in 2050

Industrielle Anlagen

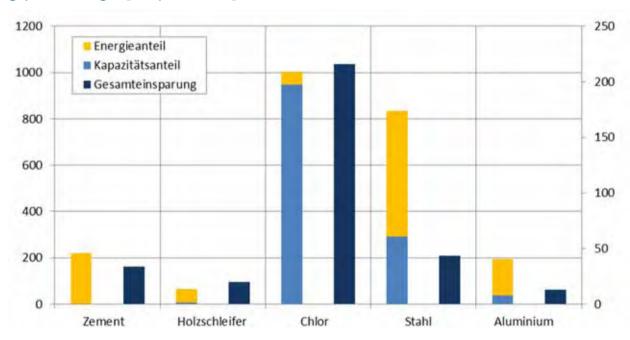
Gesteuertes P2H





Backupkapazität und Refinanzierung von Investitionen

Bereitstellung der gesicherten Backup-Leistung nach Technologieanteilen für Österreich und Deutschland im Jahr 2050



Ergebnisse: Industrielles Lastmanagement

Jährliche Systemkosteneinsparung aufgeschlüsselt nach Anteilen

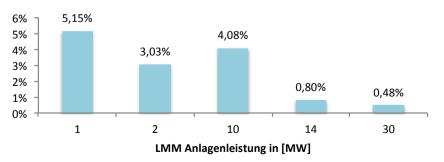
Einsparung pro Anlage [k€per Jahr]

Gesamteinsparung [Mill. € per Jahr]

Überblick Einbindungskosten (nach DENA 2)

Stromintensive Prozesse	Variable Kosten [€/MWh]		Jährliche fi [€/k\		Investitionskosten [€/kW] (Lernrate 15%)	
	2010	2020	2010	2020	2010	2020
Lastverschiebeprozesse						
Schleifer, Refiner	< 10	< 10	< 1	< 1	~ 5 - 20	~ 5 - 20
Nachtspeicheröfen	~ 0	~ 0	25,4	25,4	38	13
Elektrische Warmwasserbereitung	~ 0	~ 0	53,7	53,7	450	150
Kühl- und Gefrierschränke	~ 0	~ 0	63,2	63,2	1.190	280
Wasch-, Spülmaschinen, Trockner	~ 0	~ 0	90,9	90,9	740	176
Chloralkalielektrolyse	> 100	> 100	<1	<1	<1	<1
Lastreduktionsprozesse						
Roh- und Zementmühlen	500 – 1.000	500 – 1.000	<1	<1	~ 10 – 20	~ 10 - 20
Aluminiumelektrolyse	500 – 1.500	500 – 1.500	<1	<1	<1	<1
Elektrolichtbogenofen	> 1.000	> 1.000	<1	< 1	< 1	<1
Heizungsumwälzpumpe	~ 0	~ 0	68,0	68,0	7.070	2.360

Quelle: DENA Netzstudie 2

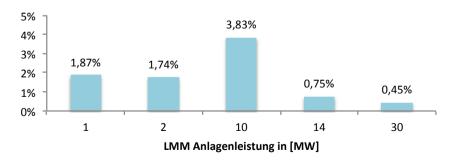

Ergebnisse: Derzeitige Einbindungskosten (n. DENA 2)

Systemkosteneinsparungen, Einbindungskosten und mögliche Zahlungen an teilnehmende LMM-Technologien in DE und AT

LMM Technologie	Verschobene Energie [MWh/a]	Systemein- sparungen [€a]	Einbindungskosten nach DENA 2 "derzeit" [€a]	Mögliche Zahlungen [∉MWh]
Zement	510158	€33.571.428	€1.016.312	64
Holzschleifer	437104	€19.877.797	€1.022.955	43
Chlor	2976336	€215.662.466	€1.717.301	72
Stahl	328557	€43.511.362	€207.674	132
Aluminium	210482	€12.907.170	€527.172	59

Anteile der Einbindungskosten

Jährliche Einbindungskosten in % der Einsparungen: Variante DENA 2 "derzeit"

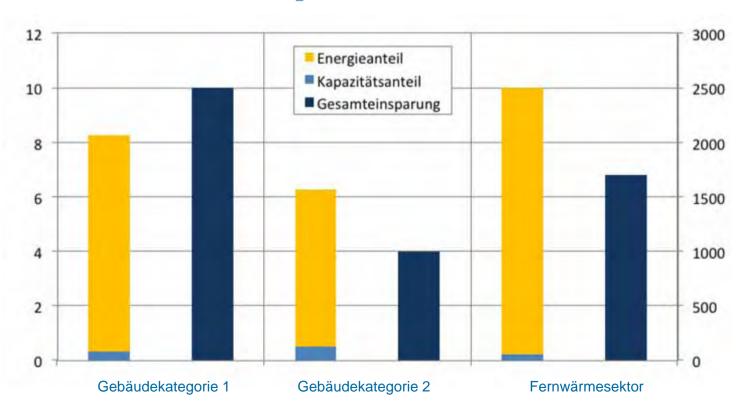


Ergebnisse: Zukünftige Einbindungskosten (n. DENA 2)

Systemkosteneinsparungen, Einbindungskosten und mögliche Zahlungen an teilnehmende LMM-Technologien in DE und AT

LMM Technologie	Verschobene Energie [MWh/a]	Systemein- sparungen [€a]	Einbindungskosten nach DENA 2 "2020" [€a]	Mögliche Zahlungen [∉MWh]
Zement	510158	€33.571.428	€584.656	65
Holzschleifer	437104	€19.877.797	€371.239	45
Chlor	2976336	€215.662.466	€1.611.151	72
Stahl	328557	€43.511.362	€ 194.837	132
Aluminium	210482	€12.907.170	€494.586	59

Anteile der Einbindungskosten Jährliche Einbindungskosten in % der Einsparungen: Variante DENA 2 "2020"



Ergebnisse: Lastmanagement durch Wärmespeicher

Jährliche Systemkosteneinsparung aufgeschlüsselt nach Anteilen

Spez. Einsparung pro Sektor [€/MWh_{Wärme_Gesamt}]

Gesamteinsparung [Mill. €/Jahr]

Ergebnisse: Lastmanagement durch Wärmespeicher

Jährliche Systemkostenreduktion durch dezentrale LMM-Maßnahmen

nach Gebäudetyp

 Einbindungskosten von ca. 33 €/Jahr werden in Abzug gebracht

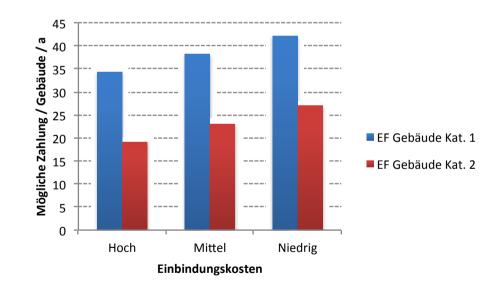
 Ermittelt aus Angaben der DENA Netzstudie 2 (50 €/a an Anreizzahlung für LMM-Teilnehmer berücksichtigt) Kategorie 1: Gebäude mit Wärmepumpe Kategorie 2: Gebäude mit Biomasse/Gas betriebener Heizung

Gebäudeklassen	Systemeinsparung abzgl. Einbindungskosten			
	Kategorie 1	Kategorie 2		
	[€Gebäude/yr]	[€ Gebäude/yr]		
Krankenhäuser (öfftl.)	22073	16726		
Handel groß	1389	1045		
Hotels und Gastwirtschaften groß	1335	1004		
Bürogebäude groß (öfftl.)	1169	878		
Bürogebäude groß	1153	866		
Sport-/ Freizeitinfrastruktur	924	693		
Schulen (öfftl.)	919	689		
Werkstätten Hallen u. Industrie / Gewerbe 1	861	645		
Hotels und Gastwirtschaften klein	822	615		
Werkstätten-Hallen GHD groß	763	570		
Büros in Wohngebäuden	726	542		
Mehrfamilienwohngebäude groß	555	413		
Handel klein	489	363		
Bürogebäude klein (öfftl.)	240	174		
Werkstätten Hallen u. Industrie / Gewerbe 2	236	171		
Bürogebäude klein	231	167		
Mehrfamilienwohngebäude klein	228	165		
Werkstätten-Hallen GHD klein	206	148		
2-Familienwohngebäude	129	90		
Einfamilienwohngebäude	67	43		

Ergebnisse: Lastmanagement durch Wärmespeicher

Mögliche Zahlungen durch dezentrale LMM-Maßnahmen nach Gebäudetyp

	Antei	ig verschobene	Mögliche Zahlung		
Gebäudeklassen	Rau	mwärme (AT)	Kategorie 1	Kategorie 2	
Gebaudeniasseri	[GWh] (alle)	[MWh/Gebäude]	[∉ MWh]	[∉ MWh]	
Krankenhäußer (öfftl.)	88	352	63	47	
Handel groß	436	22,7	61	46	
Hotels und Gastwirtschaften groß	52	21,8	61	46	
Bürogebäude groß (öfftl)	7	19,2	61	46	
Bürogebäude groß	218	18,9	61	46	
Sport-/ Freizeitinfrastruktur	36	15,3	61	45	
Schulen (öfftl)	274	15,2	61	45	
Werkstaetten Hallen u. Industrie / Gewerbe 1	420	14,2	60	45	
Hotels und Gastwirtschaften klein	517	13,6	60	45	
Werkstätten-Hallen GHD groß	174	12,7	60	45	
Büros in Wohngebäuden	169	12,1	60	45	
Mehrfamilienwohngebäude groß	766	9,4	59	44	
Handel klein	181	8,3	59	44	
Bürogebäude klein (öfftl)	10	4,3	55	40	
Werkstaetten Hallen u. Industrie / Gewerbe 2	274	4,3	55	40	
Bürogebäude klein	318	4,2	55	40	
Mehrfamilienwohngebäude klein	683	4,2	55	40	
Werkstätten-Hallen GHD klein	110	3,8	54	39	
2-Familienwohngebäude	866	2,6	50	35	
Einfamilienwohngebäude	2976	1,6	42	27	



Variation der Einbindungskosten

Auswirkungen für Einfamiliengebäude

- Einbindungskosten
 variabel → 33 €/Jahr
 niedrig; 39 €/a mittel, 45
 €/a hoch (durch
 unterschiedlich hohe
 Investitionskosten aus
 DENA 2)
- Mögliche Zahlungen decken für EF-Häuser auch im P2H Bereich die oft genannten Anreizzahlungen von 50 €/a nur teilweise

Kategorie 1: Gebäude mit Wärmepumpe Kategorie 2: Gebäude mit Biomasse/Gas betriebener Heizung

Schlussfolgerungen: Industrielles LMM

- Chloranlagen würden die größte spezifische und gesamte Kosteneinsparung erreichen, wenn die installierte Leistung für Lastverschiebung aktiviert werden kann; dies wird v.a. durch Reduktion der Reservekapazität im Stromsektor erzielt;
- Auch signifikanter Anteil an Kapazitätseinsparungen durch eine Lastverschiebung der installierten Leistung d. Stahlproduktion
- Der systemnahe Einsatz industrieller LMM-Technologien setzt jedoch geringe variable Kosten der Nachfrageverlagerung voraus (ca. 40 bis 130 €/MWh);
- Es ist daher wichtig zu prüfen, ob eine Anpassung der industriellen
 Produktionsprozesse (z.B. bei Chlor- oder Stahlerzeugung) zu einer Reduktion dieser variablen Kosten führen kann.
- Für Lastabwürfe erscheint der Einsatz als LMM-Technologie dann interessant, wenn geringe Volllaststunden der Backup-Kraftwerke zu erwarten sind und damit hohe Kosten (ca. 1600 €/MWh für Gasturbinen im HiREPS Modelllauf) entstehen; damit einhergehende Effekte durch Preisspitzen auf andere Backup-Kapazitäten wurden jedoch nicht untersucht

Schlussfolgerungen: LMM durch Wärmespeicher

- Lastflexibilisierung mittels Wärmespeicher bietet deutlich höhere Verschiebeleistung und damit Einsparung an gesicherter Leistung als industrielles LLM;
- Der spezifische Einsparungsanteil durch vermiedene Reserveleistung ist jedoch deutlich geringer als der energetische Anteil.
- Die größten spezifischen Einsparungen im Fernwärmesektor erreicht, Gebäude mit installierter Wärmepumpe weisen größtes Potential auf
- Gebäude/Kunden mit signifikanten Leistungen können dabei erhebliche Einsparungen durch die Arbitrage von Hoch- und Niedrigpreisen erzielen.
- Für Gebäude mit kleinen Leistungen und Verbräuchen decken die erreichbaren Einsparungen auch im P2H-Bereich nur teilweise die erwarteten Anreizzahlungen der LMM-Teilnehmer; Die Potentiale sind hingegen hoch; In der zukünftigen Gestaltung von Maßnahmen zur Integration von P2H Technologien ist dies entsprechend zu berücksichtigen
- Allgemein sind in einer langfristigen und erneuerbar fokussierten Energiesystemplanung
 Mechanismen zu definieren, welche die Nutzung der Flexibilität geeigneter LMM-Technologien zur Realisierung der Systemkosteneinsparungen ermöglichen.

Feedback, Diskussion und Fragen

Wolfgang Prüggler

Institut für Energiesysteme und Elektrische Antriebe – EEG prueggler@eeg.tuwien.ac.at