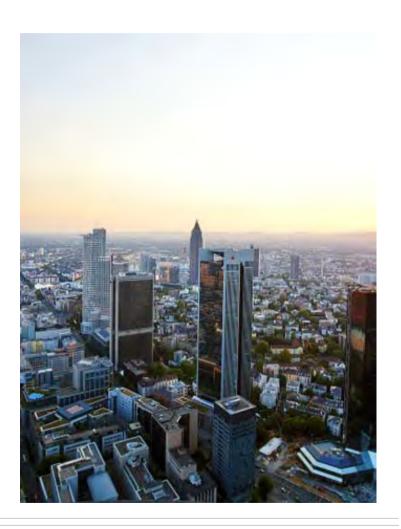
SMART GRIDS WEEK BREGENZ 2012

Beitrag von intelligenten Stromnetzen zur Stärkung der wirtschaftlichen Entwicklung ländlicher Regionen

Projektvorstellung - Zusammenfassung

Dienstag, 11. März 2014

ein Projekt in Zusammenarbeit von: 🤝 PÖYRY



GLOBAL EXPERTS IN CONSULTING AND ENGINEERING

- Pöyry is a global consulting and engineering company dedicated to balanced sustainability and responsible business
- 6 320 experts in about 50 countries
- 570 experienced management consultants
- Project experience in over 100 countries
- 15 000 projects annually
- Net sales in 2012 EUR 775 million
- Listed on the NASDAQ OMX Helsinki
- In the latest ENR annual top-200 international design firms survey Pöyry ranked
 - #6 in global power market
 - #6 in global industrial market

PÖYRY MANAGEMENT CONSULTING 500 CONSULTANTS IN 27 OFFICES IN 5 CONTINENTS

PROJEKTZIELE UND PARTNERREGIONEN

Projektziele

Volkswirtschaftlicher Beitrag von Smart Grids zur Entwicklung ländlicher Regionen bis zum Jahr 2020

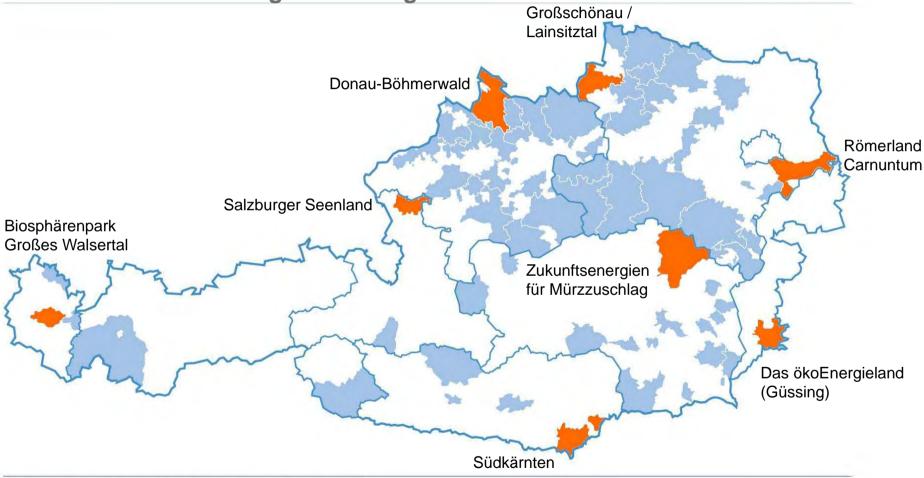
Auswirkungen von Smart Grids Auf Wirtschaft und Arbeitsplätze in ländlichen Regionen Ländlicher Raum Rahmenbedingungen, um Smart-Grid-Konzepte im ländlichen Raum

einzuführen und umzusetzen

Empfehlungen ableiten Für die Weiterentwicklung von Smart-Grid-Konzepten Stakeholder

Einbeziehen, Ergebnisse an die Fachöffentlichkeit

<u>Vertiefte Untersuchung:</u> In acht ausgewählten Modellregionen <u>Ausgehend von Modellregionen:</u> Schlüsse für den Beitrag auf Gesamtösterreich



Partnerregionen

das klima hat zukunft klima+

geografische Ausdehnung der Klima- und Energie-Modellregionen

METHODIK INSPIRED REGIONS

Smart Grids – Systembild

Regulator Gesetzgeber Politik Verbraucher · Erzeuger · Netzbetreiber · Aggregatoren · Händler

Marktteilnehmer

IT/ Serviceanbieter r Forschung

> Technologieanbieter

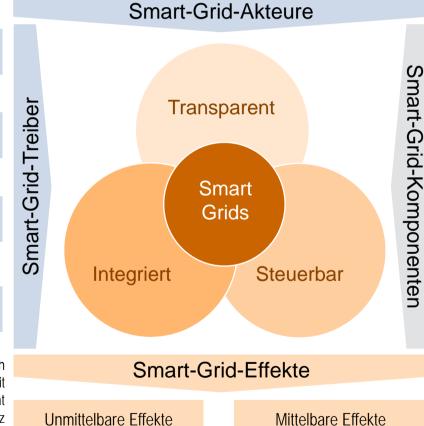
Effizienz Einsparungen Versorgungssicherheit

Markt

Beschäftigung Klima- und Umweltziele Versorgungssicherheit Wettbewerb

Politik

THG und Schadstoffreduktion


Energiesouveränität

Umwelt

Nachhaltige Energie- und Strominfrastruktur Einbindung Erneuerbarer u. Smart Grid-Funktionalitäten

Technik

Optimierter Lastausgleich Versorgungssicherheit Flexibilität Datentransparenz Effizientere Nutzung der vorhandenen Energieinfrastruktur

Wirtschaftliche

Marktmodelle

Regulatorische

Markttransparenz Standardisierung Tarifgestaltung Normung

DZ-Erzeugung Speicher

Technische

Smart Meter Automatisierung MSR-Einrichtungen

IKT

Einbindung

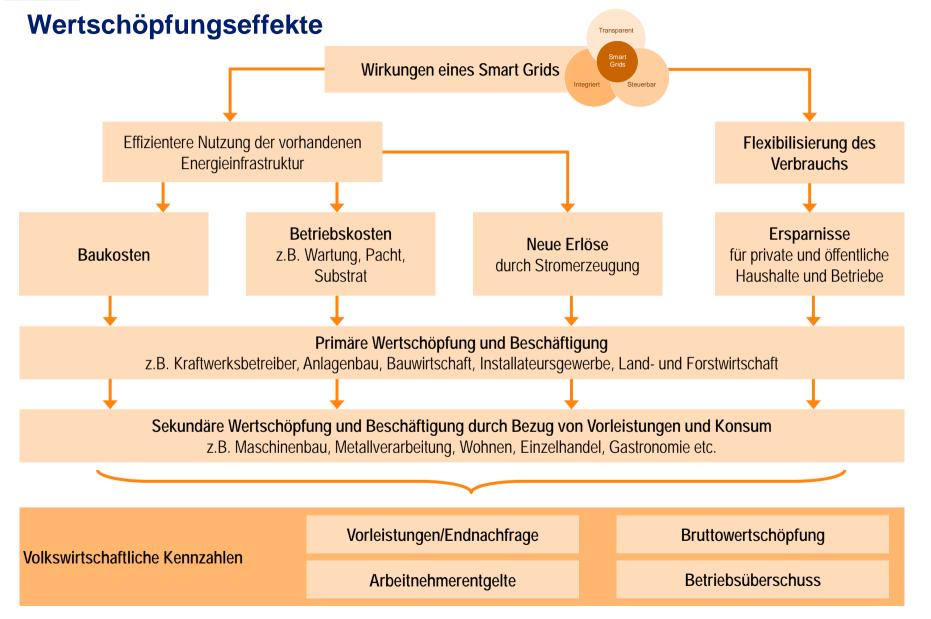
(Datenmanagement)

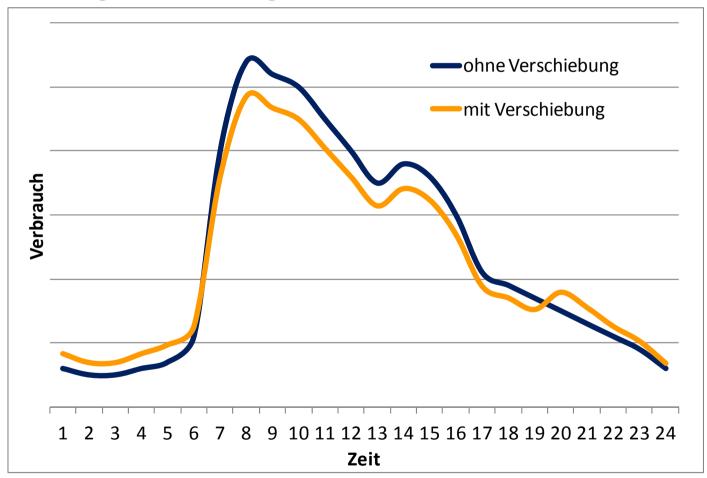
Erneuerbarer Kosteneinsparungen Einhaltung politischer Ziele

Arbeitsplätze

Reduktion der THG und Schadstoffe

Innovation

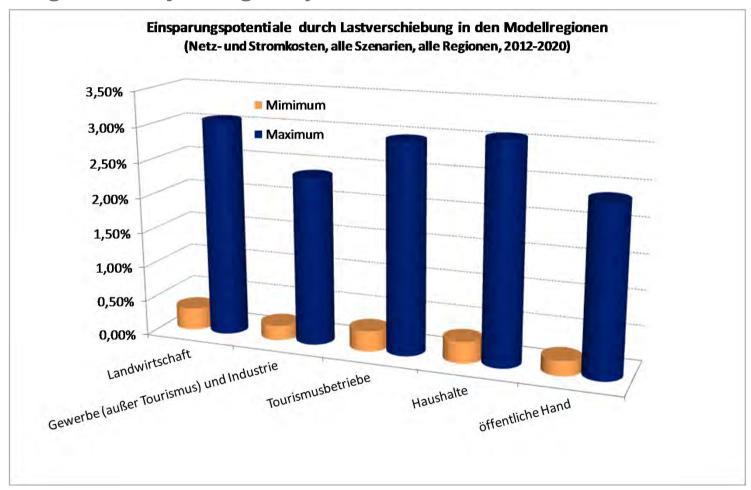

ERGEBNISSE AUS DEN REGIONEN



Ergebnisse aus den Regionen: Flexibilisierung

Nachfrageverschiebung hin zu Schwachlastzeiten durch flexible Preise

Beispielhafte Darstellung!



Ergebnisse aus den Regionen: Flexibilisierung

Einsparungspotentiale bewegen sich zwischen 0,21% und 3,08% im Vergleich der jeweiligen Systemkosten mit und ohne Flexibilisierung

Ergebnisse aus den Regionen: Zusammenfassung

Quantitative Ergebnisse positiv

- Flexibilisierung des Verbrauchs (Nachfrageseite)
 - Effekte nachweisbar, aber gering
- Vermehrte Einbindung erneuerbarer Energieträger (Angebotsseite)
 - Volkswirtschaftliche Potentiale groß
 - Aber: Wie groß der Anteil von Smart Grid für die Realisierung ist, kann aus dem Projekt heraus nicht beantwortet werden.
 - Beachte : Es gibt heute schon Regionen, in denen ein Ausbau der Erneuerbaren nur in Zusammenhang mit dem Ausbau von Smart Grids möglich ist!

SCHLUSSFOLGERUNGEN FÜR ÖSTERREICH

Schlussfolgerungen für Österreich

Es gibt Potentiale auf Nachfrage- und Angebotsseite

Das wirklich große Potential ist bei der Einbindung dezentraler erneuerbarer Energieträger zu holen!

- Z.B. €7 Mio. zusätzlicher Wertschöpfung im Großen Walsertal könnten ohne Smart Grid nicht entstehen -> das Tal wurde erst durch Smart Grids zum Stromexporteur
- Das entspräche einem Potential von rd. 4-5 nachhaltigen neuen Arbeitsplätzen ab 2020, zusätzliche Effekte entstünden durch den Bau
- In den untersuchten Fallstudienregionen k\u00f6nnten bis zu max. 20 neuen regionalen Arbeitspl\u00e4tzen erst durch Smart Grids entstehen (abh\u00e4ngig von Technologie und regionalem Know-How)

Geringe zusätzliche Wertschöpfung durch Flexibilisierung des Verbrauchs

- Je nach Szenario könnten alleine durch effizientere Ausnutzung des Netzes zwischen 30 und 580
 Arbeitsplätzen in Österreich entstehen, wenn die Ersparnise dem Wirtschaftskreislauf zugeführt werden
- Durchschnittliche Einsparung pro Haushalt in der Stromrechnung von bis zu € 15,-- im Jahr
- Insgesamt positive volkswirtschaftliche Auswirkungen, trotz rechnerischer Abgänge bei den Netzbetreibern

UND: Jede Region hat spezifische Anforderungen an Smart Grids!

EMPFEHLUNGEN

Empfehlungen

Regionen verstärkt als Treiber regionaler Interessen im E-Bereich auftreten

Regionale Empfehlungen

Regionen als Treiber für Smart Energy

- Regionen als treibende Kraft: Um Rahmenbedingungen für die Umsetzung ihrer Ziele zu schaffen
- Ganzheitliche Betrachtung des Energiesystems: Einschließlich Smart Grids notwendig
- Zusammenarbeit mit den Netzbetreibern: Unerlässlich

Energiewirtschaftliches Handbuch für Regionen

- Handbuch für jede Region: Als Auslöser, das komplexe Thema "Smart Energy" inklusive SG in den Regionen voranzutreiben
- Gemeinsamer Leitfaden: Gewährleistet eine einheitliche Vorgehensweise und Interpretation

Regionale "Smart-Energy"-Verantwortliche

- Regionale Ansprechpartner (z.B. Modellregionsmanager): Um den Wissensstand in den Regionen zu verbessern.
- <u>Aufgaben:</u> Zentrale Ansprechpartner sowie Moderator zwischen den unterschiedlichen Akteuren (Erneuerbaren Erzeuger, Prosumer, Netzbetreiber, Politik, ...)

SG-Konzept und Einführungsplan für die Regionen

- SG-Konzept und Einführungsplan: Auf Basis der Potentiale von SG (siehe nationale Empfehlungen),
 Speichertechnologien und unter Einbindung der Netzbetreiber.
- Regionale energiewirtschaftliche Pläne: Werden ebenso berücksichtigt wie Synergiepotentiale mit benachbarten Reg.

Empfehlungen

Der Wissensstand über Smart Grids muss verbessert werden

Nationale Empfehlungen

Potentiale/Notwendigkeiten von Smart Grids in den Regionen untersuchen

- <u>Das Potential der regionalen Wertschöpfung durch erneuerbare Energieerzeugung</u>: Kann nur dann vollständig erfasst werden, wenn vertieftes Wissen über regionale Stromnetze vorhanden ist
- Netzanpassungen: In welchen Regionen sind in welchem Ausmaß Netzanpassungen (SG oder/und Netzausbau) notwendig, um die dezentralen Erneuerbaren ins Stromnetz einspeisen zu können.
- Zusammenarbeit mit Netzbetreibern: Für diese Untersuchungen unerlässlich

SG Informations- und Bewusstseinskampagnen aufsetzen

- <u>Aufklärungs- und Bewusstseinskampagne</u> für die Verantwortlichen der Regionen: Um den Wissenstand in den Regionen über SGs und deren Zusammenhang mit Erzeugungs-, Speicher- und Verbrauchsmanagement zu heben
- "Smart-Grid-Leitfaden für Regionen": Hilfestellung für Regionen. Letztlich vor dem Hintergrund, nationale und regionale energiewirtschaftliche Ziele zu erreichen

Innovative Konzepte und Tarifmodelle erarbeiten

- <u>Technische und wirtschaftliche Konzepte</u>: Notwendig, um die regionalen Energiesysteme möglichst effizient zu nutzen
- Technische Konzepte: Beeinflussen Steuerbarkeit: z.B. über intelligente Netzsteuerung
- Wirtschaftliche Konzepte: Beeinflussen Integration von z.B. virtuellen Kraftwerken
- Flexible Tarifmodelle für Endkunden: Mit dem Ziel, Incentives für eine Änderung des Verbraucherverhaltens zu bieten

Beitrag von intelligenten Stromnetzen zur Stärkung der wirtschaftlichen Entwicklung ländlicher Regionen

Kontakt

- Pöyry
 - Laura Kropiunigg · laura.kropiunigg@poyry.com
 - Horst Dulle · horst.dulle@poyry.com
- ÖIR
 - Sebastian Beiglböck beiglboeck@oir.at
 - Gregori Stanzer stanzer@oir.at

ein Projekt in Zusammenarbeit von: 🤝 PÖYRY

