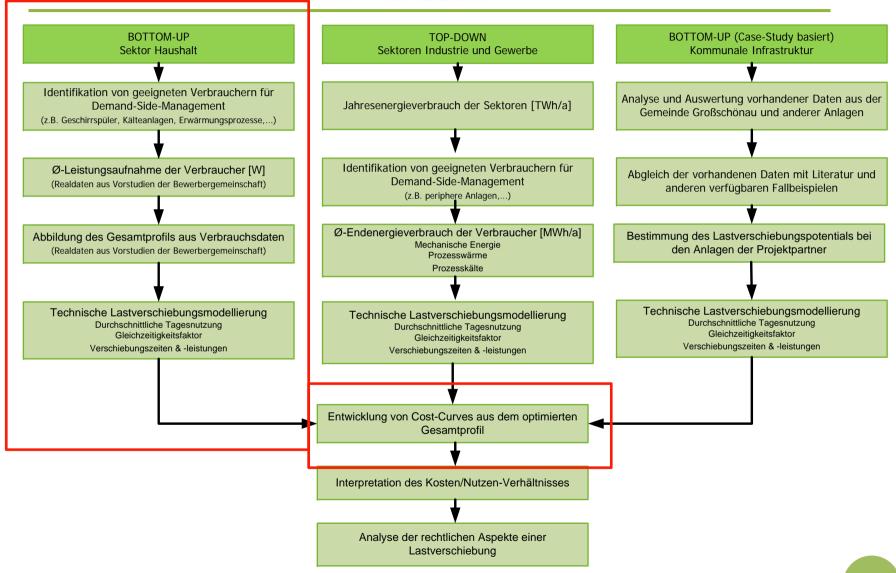


Lastverschiebung in Haushalten Potenzialanalyse für Smart Grids

Smart Grids 2.0: Workshop "Flexibilität"

Andrea Kollmann // Simon Moser // Christian Elbe Energieinstitut an der JKU Linz

Linz, 05.03.2014

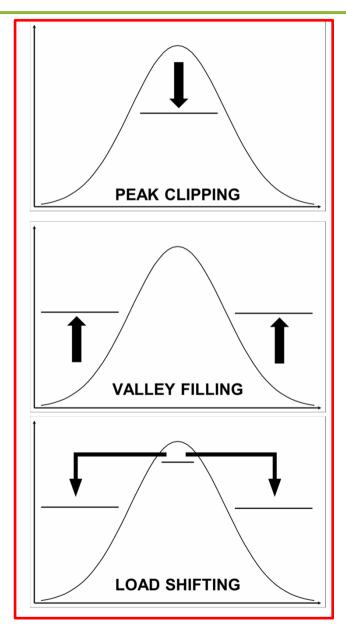

1. Das Projekt LoadShift 1/2

- Laufzeit: Mai 2012 bis April 2014
- Förderung durch KLIEN, 4. Ausschreibung NE2020

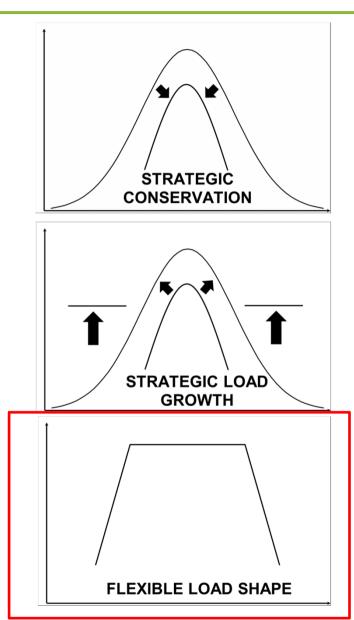
Projektkonsortium:

- 4wardEnergy Research GmbH
- e7 Energie Markt Analyse GmbH
- Energieinstitut an der JKU Linz GmbH
- E-Werke Stubenberg reg GenmbH
- JOANNEUM RESEARCH Forschungsgesellschaft mbH; RESOURCES Institut für Wasser, Energie und Nachhaltigkeit
- Sonnenplatz Großschönau GmbH
- Stadtwerke Hartberg GmbH
- Technische Universität Graz Institut für elektrische Anlagen

1. Das Projekt LoadShift 2/2

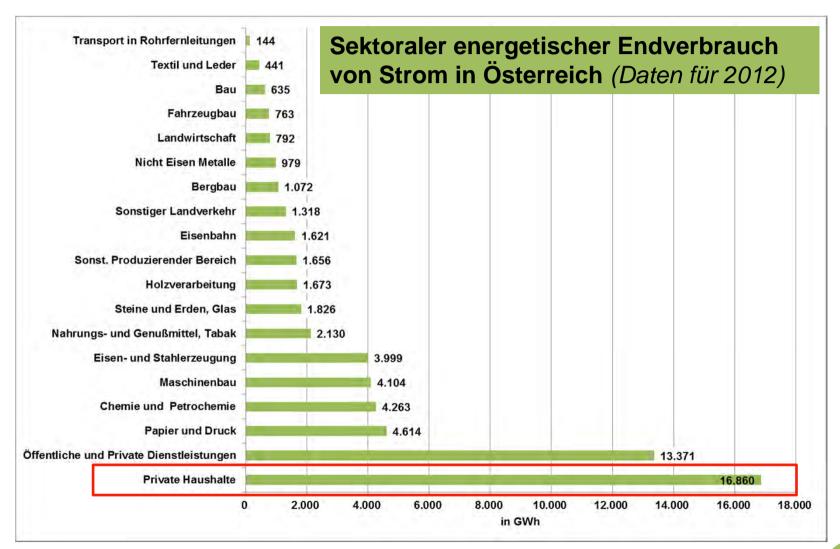


2. Was ist Lastverschiebung? 1/2

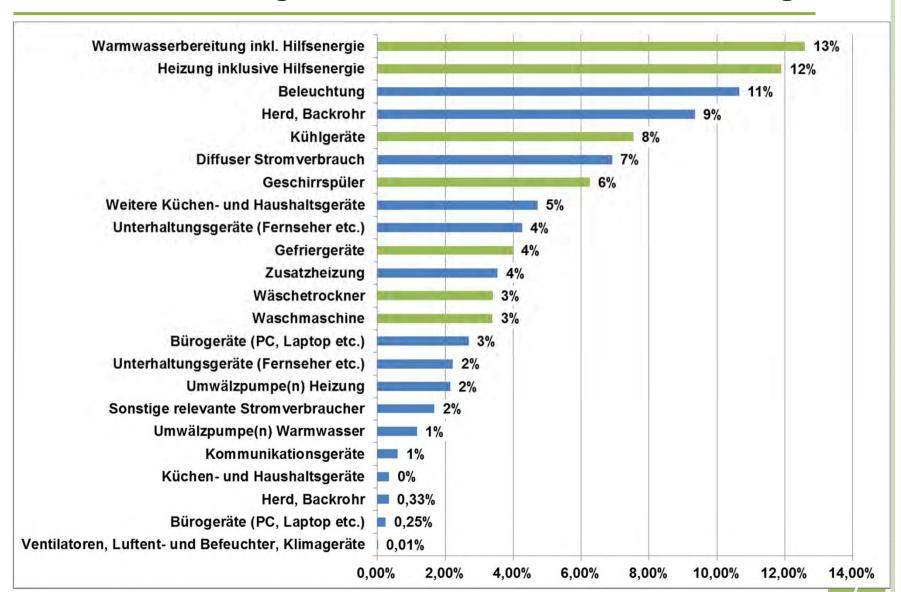

Demand Response:

- Überbegriff für Vielzahl an Möglichkeiten, wie das Stromverbrauchsverhalten von Endkunden durch ein Signal (monetär aber auch nicht monetär) beeinflusst werden kann → zielt auf eine *kurzfristige* Veränderung des Stromverbrauchs ab.
- "kurzfristig" bedeutet dabei
 - Zeitraum, der bis zur Auslösung einer Reaktion anfällt (Zeitraum bis der Kunde informiert ist und dieser Handlungen in Erwartung bzw. Vorbereitung der Lastverschiebung gesetzt hat).
 - Dauer der Verbrauchsbeeinflussung: Sekunden (Beitrag zur Netzstabilität) bis maximal ein Tag (Vermeidung von Spitzenlasten).
- Demand Response ist von Maßnahmen zu einem energetisch effizienteren Einsatz von Strom zu unterscheiden (strategic conservation).

2. Was ist Lastverschiebung? 2/2



Demand Side Management


Darstellung nach Gellings und Smith (1989)

3. Lastverschiebungen in Haushalten - Energiebilanz

Quelle: Statistik Austria, 2013

3. Lastverschiebungen in Haushalten – Verbrauchskategorien

Quelle: Statistik Austria, 2013

Elektrogeräte

- mit thermischen Speichern oder
- bei denen <u>ohne Komfortverlust</u> Verschiebung möglich ist
- Klassen von Elektrogeräten (nach Zeilinger, 2011)
 - Klasse 1: Gerät wird bei Bedarf eingesetzt (z.B. Haarfön)
 - Klasse 2: Gerät spult vordefiniertes Programm ab (z.B. Geschirrspüler, Waschmaschine)
 - Klasse 3: Gerät versucht vorgegebenen Zustand zu erhalten (Gerät mit thermischem Speicher)

Lastverschiebung durch Auswählen des Startzeitpunkts

- Waschmaschine
- Wäschetrockner
- Geschirrspülmaschine

Lastverschiebung durch Zu- oder Abschalten des Gerätes

- Kühlgeräte
- Gefriergeräte
- Warmwasser
- Elektrische Raumwärme

Waschmaschine

- Aufheizprozess ist energieintensivste Teil, Dauer bis zu ½ Stunde
- Verschiebepotential gegeben, wenn Ende des Waschvorgangs frei wählbar ist
- Hemmnisse: Ruhestörung in der Nacht, Zerknittern der Wäsche, wenn fertige Wäsche zu lange liegt

Wäschetrockner

- Verdampfung von Wasser durch Wärmeeinwirkung ist für Lastverschiebung geeignet
- Hemmnisse: Trocknungsprozess wird unmittelbar nach Waschung durchgeführt, lange Liegezeit führt zu zerknittern

Geschirrspülmaschine

- Wärmeerzeugung zu Beginn des Prozess und Trocknungsvorgang am Schluss sind energieintensivste Prozesse
- Hemmnisse: Nutzerabhängigkeit, mögliche Zeitdauer zwischen Einräumen und Einschalten

Kühl- und Gefriergeräte

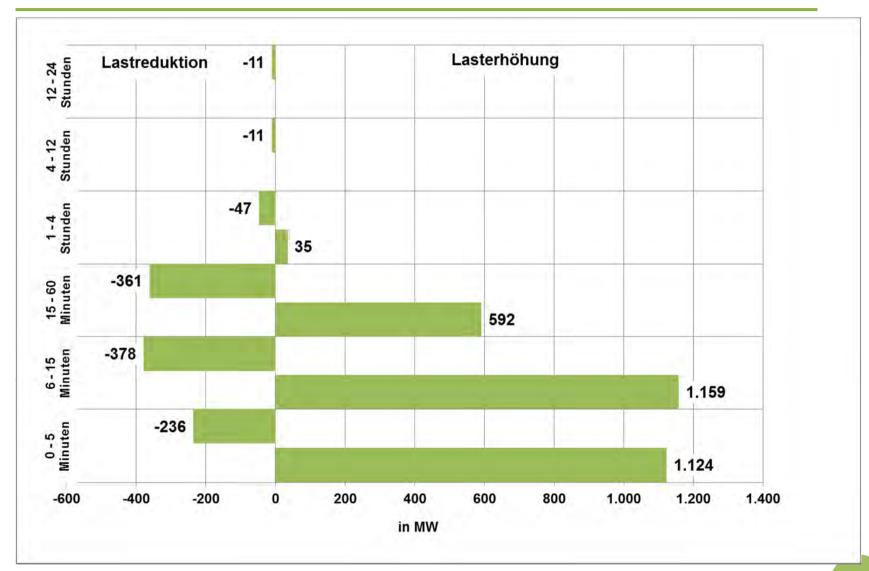
 Gerät selbst und Lebensmittel haben thermischen Speicher so dass Kälte auch bei Abschalten des Gerätes etwa 1 Stunde hält

Warmwasser

 Elektrowarmwasserspeicher: werden bereits durch Rundsteuergeräte in Schwachlastzeiten geschaltet; Lastverschiebung sehr gut möglich

Wärmepumpe

Lastverschiebung möglich; Größe des Speichers und Isolierung relevant

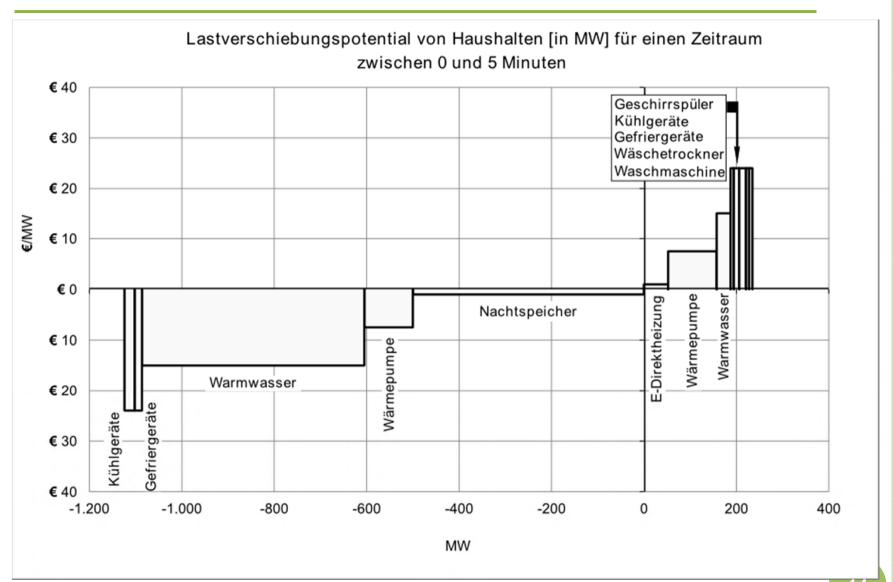

Elektrodirektheizungen

 Haben keinen thermischen Speicher, Lastverschiebung durch Änderung des Nutzerverhaltens möglich

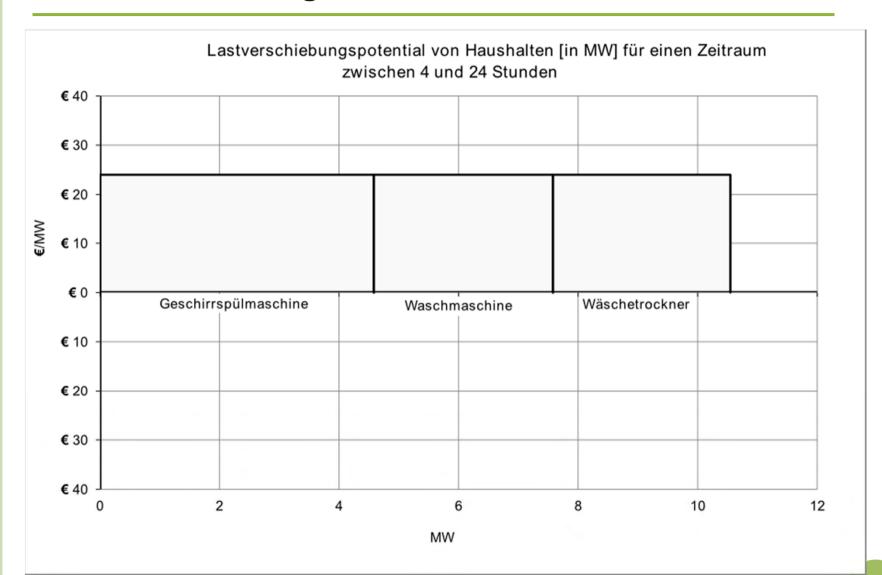
Nachtspeicherheizungen

 Haben hohe Speicherkapazität und eignen sich für Lastverschiebungen

3. Lastverschiebung in Haushalten – Potential



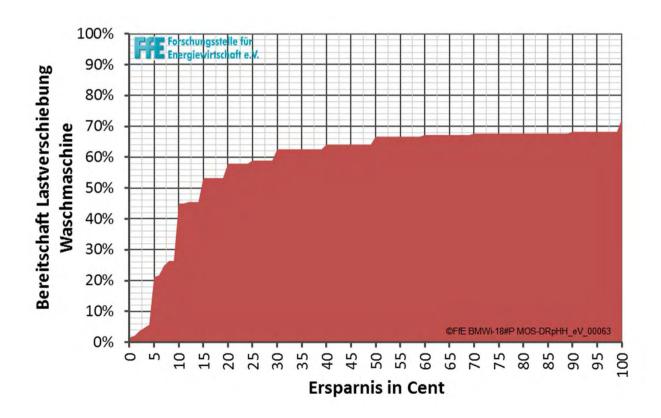
3. Lastverschiebung in Haushalten – Kosten


Kosten sind Fixkosten. Mit einer steigenden Anzahl verschobener kWh sinken die Kosten pro verschobene kWh. Hier: Durchschnittswerte / In der Praxis hohe Varianz.

Gerät	Kosten/HH/a	Kosten pro kWh/a
Waschmaschine, Wäschetrockner, Geschirrspüler, Kühl- und Gefriergeräte (Smart Home)	85 €	0,24 € kWh
Warmwasser	100 €	0,15 € kWh
Elektro-Einzelofen	∞€	∞ € kWh
E-Direktheizung	0€	0,00 € kWh
Nachtspeicher	0€	0,00 € kWh
Wärmepumpe	30 €	0,075 € kWh

4. Lastverschiebung in Haushalten – Kostenkurve 0-5 min

4. Lastverschiebung in Haushalten – Kostenkurve 4-24 h



5. Lastverschiebung – Hürden 1/2

- Bedarf nach "Rotem Knopf", mit dem ein Haushalt die Kontrolle über seine Geräte zurückerlangen kann. Verbindlichkeit?
- Kommunikation zum Haushalt bzgl. Ankündigungsart und -frist (In-House-Displays, Alarmfunktionen bei Lastüberschreitungen, intelligente Haushaltsgeräte und vollautomatische Schaltung einzelner Verbraucher im Haushalt)
- Kosten für Marketing, Kundeninformation, Automatisierung bzw.
 Speicherung. Verhältnis Kosten/Nutzen?
- Organisatorische und systemische Herausforderungen durch Anpassung des Verhaltens. Gelernte und in Folge automatisierte Abläufe müssen neu konditioniert werden. Die zeitlichen Kosten und der verursachte "Stress" sind als Opportunitätskosten anzusehen.
- Relation zwischen der "Automatisierbarkeit" und der Akzeptanz eines flexiblen Tarifs besteht. Automatisierung überall möglich?

5. Lastverschiebung – Hürden 2/2

 Flexible Tarife, die eine Lastverschiebung induzieren sollen, sind ein Produkt, das dem Endkunden unbekannt ist. Erwartungen, inwieweit aus dem flexiblen Tarif Nutzen/Kosten erwachsen, spielen eine wesentliche Rolle.

Danke für die Aufmerksamkeit!

Kontakt:

Energieinstitut an der Johannes Kepler Universität Linz GmbH

Altenberger Straße 69

4040 Linz

Tel: +43 70 2468 5656

Fax: + 43 70 2468 5651

e-mail: office@energieinstitut-linz.at

