Search results

There are 29 results.

Stadt der Zukunft

Sol4City - Integrated solar supply concepts for climate-neutral buildings for the "city of the future"

Intelligent technology coupling to achieve high solar coverage of the buildings (multi-storey residential building) heat and electricity demand. At the end of the project, integrated energy supply concepts for multi-storey residential buildings based on high network interaction and flexibility potential, maximum surface efficiency of conversion technologies on site and high economic competitiveness are available for the broad applicability in the "City of the Future".

Stadt der Zukunft

SolCalc: Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps

Development of a standardized calculation algorithm for the energy consumption assessment and the energy certification of residential buildings with a solar fraction of up to 100% in combination with biomass boilers and heat pumps

Stadt der Zukunft

Urban district heating extended – Development of flexible and decarbonized urban district heating systems

Development of innovative urban district heating systems by integration of long-term thermal storage, large scale heat pumps, large scale solar thermal installations, waste heat recovery and analysis and evaluation by simulation. The results of this project will provide templates for technology selection, system design and merit order for new urban district heating areas.

Haus der Zukunft

Using buildings as energy storage - Monitoring project: Detached house H and detached house F Energy source wind power – Energy source solar power

Monitoring and comparison of performance of thermally activated building components in two similarly built, inhabited detached houses with different energy sources (wind and solar power). The functionality of energy supply through wind power or solar energy will be investigated as well as the verification of the practicability of self-regulating system control due to building temperature behaviour. The results provide an insight into the calculation assumptions, system control and feasibility of the smart grid technology.

Stadt der Zukunft

ecoRegeneration: Development of a "Merit-Order" in order to assess regeneration heat for geothermal probes within urban residential neighbourhoods

In urban residential areas there are not enough active-cooled usages, to use the waste heat of the cooling process as required regeneration heat for geothermal probes; free cooling of the apartments is not sufficient. The project is developing various options (waste heat from commercial uses in the ground floor zones of residential buildings, by using waste heat of data centres, additional installation of heat generation systems for regeneration) within the urban settlement area, business models and is calculating life-cycle-costs of all solutions. The result should be a kind of "merit order" for regeneration heat.

Stadt der Zukunft

fit4power2heat

The integration of heat pumps can increase the cost effectiveness of existing heating networks and counter the high costs for the expansion of power grids at the same time. Aim of the project is to develop innovative business models for small and medium municipal heating networks with focus on synergies between heat and power market. Main focus is a heat pump pooling for several heat grids.

Haus der Zukunft

solSPONGEhigh - High solar fraction by thermally activated components in an urban environment

Within this project the intensive use of thermally activated building elements (TABs) as an additional thermal storage in different buildings, with solar technologies (thermal, PV) preferred for energy supply, was investigated. The aim was to activate and use the thermal storage potential that is immanent in the building elements and thereby achieve solar coverage of the building's heat demand of nearly 100 %.

Haus der Zukunft

urban pv+geotherm - Innovative concepts for the supply of large volume buildings/ quarters with PV and geothermal energy

The use of renewable energies in inner city locations is mostly linked to higher costs andconsidered as problematic. The aim of this project was to optimize (cost and energy) heating (and where required, cooling) using geothermic and photovoltaic for an urban, densely-built development area. With the project´s findings it will be easier to ecologically and economically plan the use of renewable energies especially in urban areas.

Stadt der Zukunft

ÖKO-OPT-AKTIV - Optimised control and operating behaviour of thermally activated buildings in future urban districts

Development and simulation of scalable, distributed control strategies for the use of the storage effect of thermally activated components in buildings of future city districts for their energy supply by an energy centre.