

Inductive EVSE Technology

Janosch Marquart University of Applied Sciences NTB Buchs

Inductive EVSE Technology

Janosch Marquart University of Applied Sciences NTB Buchs

Topics

- About Me
- History of IPT

Source: Wikipedi

- IPT Technology
- IPT@NTB

- QI Demonstrator
- Commercial Products

About Me

Me @ NTB

- BSc. since 2011
- MSc. since 2014
- Applied R&D since 2011
 - From Watts to Kilowatts

Power Electronics @ NTB

- Prof. Dr. Kurt Schenk
- Active R&D since 2010
- IPT R&D since 2012
- ECPE Competence Center since 2016

History of IPT

- From the Beginning
- Pro's and Con's
- Inductive Charging for EVs

- 1831 M. Faraday discovers and proves electromagnetic induction.
- **1887** N. Tesla starts research in the field of AC-systems (synchronous machines) and high frequency AC systems.
- ~1995 First electric toothbrushes are charged without cables.

- 2002 Conductix-Wampfler starts inductive charging for first electric busses in Genau and Turin.
- 2007 M. Soljacic (WiTricity) is capable of transfering 60 W for a lightbulb over the distance of 2 m.
- 2008 Foundation of the Wireless Power Consortium, which later introduces the well known QI standard.
- 2010 First smartphones can be charged wireless.
- 2015 Commercial 3.5 kW ICS

Michael Faraday

Nikola Tesla

M. Soljacic and his Team

Pro's

- Increased reliability and lifetime of systems.
- New degree of freedom e.g. for design.
- Increased comfort.
- Increased safety.

Con's

- Magnetic field in the air
- Alignment for efficient charging
- LOD and FOD can interrupt charging.

Static Charging

- The Vehicle is not moving for a long to medium period of time (e.g. > 5 minutes).
- · Driver does not intend to use the vehicle soon.
- Possible scenarios: Parking at home or at the office

Stationary Charging

- The Vehicle is not moving for a short period of time (e.g. < 5 minutes).
- Driver remains in the vehicle.
- Possible scenarios: Traffic lights, bus stops or delivery trucks.

Dynamic Charging

- · The Vehicle is moving while being charged.
- · Driver remains in the vehicle.
- Possible scenarios: Traveling on highways or on city streets.

IPT Technology

Input Voltage: 600 V - 800 V Output Voltage: 330 V - 440 V

Output Power: 22 kW

Switching Freq.: 81.4 kHz - 90 kHz

- Resonant topology
- Compensation network
- Minimizing primary current

IPT Technology

IPT @ NTB

- 2012: 3.5kW IPT during Master thesis
- 2014: 7.2kW IPT during Bachelor thesis
- 2015: 11kW/22kW IPT as a CTI Project
- 2017: Task leader "innovative charging technology" for SCCER
- 2017: Representing Switzerland at IEA HEV TCP Task 26

Power Level: 3.5 kWOutput Voltage: 400 VSwitching Freq.: 96 kHz

• CPM: 250 mm x 250 mm

• Misalignment: 60 mm (x-Axis)

Misalignment: 90 mm (y-Axis)

• Airgap: 50 mm - 160 mm

Early Lab Demo

• Power Level: 7.2 kW

Output Voltage: 200 V - 440 V

• Switching Freq.: 85 kHz +- 5 kHz

• CPM: 250 mm x 250 mm

Misalignment: 75 mm (x-Axis)

Misalignment: 150 mm (y-Axis)

• Airgap: 100 mm - 200 mm

Early Protoype

Early Testsetup of 22 kW System Efficiency up to 96 %

IPT @ NTB

- 2012: 3.5kW IPT during Master thesis
- 2014: 7.2kW IPT during Bachelor thesis
- 2015: 11kW/22kW IPT as a CTI Project
- 2017: Task leader "innovative charging technology" for SCCER
- 2017: Representing Switzerland at IEA HEV TCP Task 26

QI Demonstrator

- 110 kHz to 250 kHz
- 5 W / 15 W low power
- 120 W medium power
- Communication using modulation

Commercial Products

Availability of Data

Statistical Data

Available Systems

Efficiency Comparison

Future Impact

Official Sources

Almost no official sources

System Comparison

Difficult to compare as the standardization process is not yet finished.

Competition

Heavy competition, everyone wants to get a piece of the cake!

Source: http://www.statista.com/statistics/270603/worldwide-number-of-hybrid-and-electric-vehicles-since-2009/

 $Source: \underline{http://de.statista.com/statistik/daten/studie/431317/umfrage/ladestationen-fuer-elektroautos-weltweit}$

PluglessPower	https://www.pluglesspower.com/
Qualcom Halo	https://www.qualcomm.com/products/halo
Conductix Wampfler	http://www.conductix.ch
Kaist (Korea)	http://www.kaist.edu
Bombardier PRIMOVE	http://primove.bombardier.com
Momentum Dynamics	http://www.momentumdynamics.com
WiTricity	http://witricity.com/
Eaton HEVO	https://www.hevopower.com/
IPT Technology GmbH	http://www.ipt-technology.com
ORNL WPT (DOE Oak Ridge National Lab)	Licenses the technology to the private sector.

Commercial Products

Availability of Data

Statistical Data

Available Systems

Efficiency Comparison

Future Impact

Inductive EVSE Technology

Janosch Marquart University of Applied Sciences NTB Buchs