

Antriebstechnologien und Energieträger für den Straßenverkehr der Zukunft

Peter Prenninger

Powertrain Competition Challenges for Individual Technologies

There is no silver bullet – each technology has to master specific hurdles

Future Battery Cell Technology

Fuel Cell Thermal Management

1. FC Stack

- Even coolant distribution between and within cells
- Even cell temperature distribution and effect on local reaction

- Strategic thermal management of FC System
- Integration in thermal management of entire vehicle with thermal management of battery, power electronics and cabin

3. FC Truck

Heat rejection at:

- Lower coolant temperature
- Under extreme ambient conditions
- With low air resistance

Key Challenge of Renewable Energy – Intermittency

Electrochemical Storage (Decentral)

Source: wind park Germany, 2000 kW

Photovoltaic Germany, 100 kW

Chemical Storage (Central)

Different types of intermittency require different energy storage methods

Efficiency Chain of Different Energy Carriers

With direct use of electricity, BEV has by far the highest efficiency

Efficiency Chain of Different Energy Carriers

With direct use of electricity, BEV has by far the highest efficiency

Based on chemical energy storage, FCEV and PtX/ICE become highly competitive

Hydrogen & eFuel Production with SOEC

Carbon-neutral Road Transport 2050 a technical study from a well-to-wheels perspective

Online March 2021

Concept of the study

3 Powertrain Scenarios 2050

3 different powertrain scenarios analysed (corner-points):

- Highly Electrified incl. Electrified Road Systems (HE-ERS)
- Highly Electrified incl. Hydrogen (HE-H)
- Hybrids Scenario (Hyb)

Results: WTW energy consumption 2050

→ 4 fuels scenarios

Energy consumption by fuel, WTT and TTW, shown for → 3 Fleet scenarios combined with Optimistic and Pessimistic measures

→ 2 Electricity production scenarios

WtT for DAC CO2 compensation

Results: WTW energy consumption 2050

Energy consumption by fuel, WTT and TTW, shown for

→ 4 fuels scenarios

→ 3 Fleet scenarios combined with Optimistic and Pessimistic measures

→ 2 Electricity production scenarios

WtT for DAC CO2 compensation

Results: WTW energy consumption 2050

Energy consumption by fuel, WTT and TTW, shown for

→ 4 fuels scenarios

→ 3 Fleet scenarios combined with Optimistic and Pessimistic measures

→ 2 Electricity production scenarios

WtT for DAC CO2 compensation

FVV FUEL STUDY IV

Transformation of Mobility to the GHG Neutral Post Fossil Age Most efficient pathways to carbon neutral mobility in 2050

International Symposium of Life-Cycle Emissions of Future Vehicles and Mobility (LIEF) WebCon, 30 November 2021

Dr. Ulrich Kramer, FVV (Ford-Werke GmbH) Dr. David Bothe, Frontier Economics Frank Dünnebeil, ifeu

No Fossil Carbon Enrichment in System Boundaries of FVV Fuels Study IV FWTW* Carbon Neutral European Mobility in 2050

100% Scenarios for GHG** neutral (carbon neutral) mobility on a WtW* basis (photo year 2050)

All future propulsion pathways require carbon neutral electricity (solar / wind).

Closed carbon circuit → no enrichment of fossil C in atmosphere

	In atmosphere	BEV:	Battery Electric Vehicle
*	WTW: Well-To-Wheel	FCEV:	Fuel Cell Electric Vehicle 6
**	GHG: Green House Gas	ICEV:	Internal Combustion Engine Vehicle

FVV | FVV Fuels Study IV | 30 Nov 2021

Fleet development (ramp-up) determined by vehicle lifetime

Vehicles of out-phasing fleet, operated with fossil diesel

- Vehicles of out-phasing fleet, operated with fossil gasoline
- New carbon neutral vehicles, operated with defossilized fuel/energy
- Total number of vehicles (fleet stock)

- Theoretical ramp-up gradient, determined by fleet exchange rate.
- Same gradient for all pathways (also for drop-in FT fuel !)
- Further bottlenecks need to be defined in a follow-up study.

Exampl

Environmental impacts analysis

Comparison: Cumulative GHG emissions with remaining GHG budget

CO₂ EMISSIONS OF EXISTING FLEET
TO BE REDUCED DRASTICALLY

al ramp-up determined by fleet exchange rate) **oon (2031/32) just by transport** & energy system production by 2030) sting vehicle fleet

VV | FVV Fuels Study IV | 30 Nov 2021 * 1.5°C 50th ... 67th TCRE European share according to population share (6.5%) for EU27+UK road 21 transport (C2G basis: including build-up of fuel/energy supply infrastructure + vehicle production/disposal)