

Stakeholderdialog "Biobased Industry", 07.Dezember 2018

OPTISOCHEM – Nachhaltigkeitsbewertung der Umwandlung von Weizenstroh in die Plattformchemikalie Bio-Isobuten im Demomaßstab

Energieinstitut an der Johannes Kepler Universität Linz Johannes Lindorfer, Karin Fazeni-Fraisl

content

- Project profile OPTISOCHEM- H2020-BBI
- Isobutene characteristics & applications
- Our role Sustainability & Life Cycle Assessment
- First results & future prospects

OPTISOCHEM - OPTimized conversion of residual wheat straw to bio-ISObutene for bio based CHEMicals

Project durationJune 2017 – Mai 2021

Project objectives:

EU contribution EUR 9,76 million

- Demonstrate the production of wheat straw hydrolysate and establish a quality standard to feed the IBN fermentation unit
- Demonstrate the production of bio-IBN from wheat straw hydrolysate (WSH) at precommercial scale
- Demonstrate the quality of end products obtained with bio-IBN as a feedstock and using traditional commercial processes designed for fossil based IBN
- Determine and validate the targeted technical, economic as well as environmental
 & social sustainability performances to be achieved for a flagship plant project

OPTISOCHEM – Project partners

Coordination

GLOBAL BIOENERGIES

France, technology owner for light hydrocarbons via biological methods

Project partners

Clariant Produkte (Deutschland) GmbH, Munich, Germany

INEOS Services, Belgium

Technip France SAS, France

IPSB, France

Energy Institute at the Johannes Kepler University Linz, Austria

www. http://optisochem.eu/

Isobutene

- a platform molecule with large existing markets

- C₄H₈ four-carbon branched alkene (olefin)
- H C H C H

- one of the four isomers of butylene
- colorless flammable gas at standard temperature and pressure
- Application in materials Application in fuels
 - Butyl rubber

- Gasoline
- Plastics & lubricants
- Jet fuel

Organic glass

- Domestic gas
- Chemicals & cosmetics

todays potential in fuels application ~ 12 mio. t/a

todays potential in materials application ~ 2.5 mio. t/a

Isobutene – biobased technology in the upscaling

- Global Bionergies: Breakthrough via synthetic biology for direct fermentation of gaseous hydrocarbons from sugars (protected by 32 patent families)
 - ⇒ purification and further conversion by conventional petrochemistry

Demo plant in Leuna, Germany © Global Bioenergies

5,000 L fermentation unit

DSP, purification

Overview of OPTISOCHEM project activities

Our role - Sustainability & Life Cycle Assessment

- Full Life Cycle Analysis for isobutene from three different feedstocks
 (fossil and bio-based) and comparison and ranking of the environmental
 performance of the analysed production routes and validated end-user
 products
- In depth understanding on the availability and price of lignocellulosic raw material in Europe and its influence on process economics and LCA.
- Providing a system's perspective on the socio-economic impact of an a advanced biobased isobutene market in Europe

Sustainability & Life Cycle Assessment

LCA fossil isobutene reference systems

Several different production routes applied in industry – application partly dependent on market conditions

⇒ limited data availability

Sustainability & Life Cycle Assessment

LCA on isobutene from 1st generation sugars

scenario 1 scenario 2 scenario 3 scenario 4 scenario 5 scenario 6 scenario 7 scenario 8

Source: Energieinstitut an der JKU

Source: http://www.s2biom.eu/en/, Delivery of sustainable supply of non-food biomass to support a "resource-efficient" Bioeconomy in Europe, EU-7th Frame Programme. Grant Agreement no. 608622

REWOFUEL - REsidual soft WOod conversion to high characteristics drop-in bioFUELs

http://www.rewofuel.eu/

- demonstrate the performances, reliability, environmental and socio-economic sustainability of
 the entire value chain, for the transformation of residual soft-wood into hydrolysate (RWH),
 conversion of RWH into bio-Isobutene (bio-IBN) by fermentation and further conversion
 to biofuels.
- The targeted biofuels are full-bio-ETBE, bio-isooctane and bio-isododecane rich biofuels.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 792104.

If you have any questions please contact us!

For more information please visit:

http://optisochem.eu/

http://www.energieinstitut-linz.at/v2/portfolio-item/optisochem/

Johannes Lindorfer
Energy Institute at the Johannes Kepler University Linz
Altenberger Strasse 69 | A-4040 Linz
Tel +43 732 2468 5653 | Fax +43 732 2468 5651
Lindorfer@energieinstitut-linz.at

www.energieinstitut-linz.at

This project receives funding from the Bio Based Industries Joint Undertaking (BBI JU) under grant agreement No 744330.