

Value-optimised use of bioenergy in a flexible energy infrastructure - VaBiSys

Highlights of Bioenergy Research 2020

CEBC 2020, Graz, Austria

Presented by: I. Hannula, VTT

Cost of wind and solar has decreased drastically

Offshore wind has massive potential

Variability is normal

But variability increases with more wind

HERE

ALSO HERE

ERA-Net project: Value-optimised use of biomass in a flexible energy infrastructure

- 1. Development of **new bioenergy solutions** to serve energy markets with a high need for flexibility;
 - Solid-biomass boilers for back-up
 - Pyrolysis-based intermediates
 - Gasification plants co-producing heat, fuels and electricity
 - Biogas plants for back-up
- 2. Significantly extending the flexibility of known bioenergy technologies;
- 3. Identification of **costs**, **benefits and development needs** for potential bioenergy concepts in a VRE dominated energy system;
 - A. Hour-based generation planning
 - B. Production cost simulation for a full year (including forecasting errors)
- Improved understanding about the economic, social and environmental sustainability of biomass used in a flexible energy system; and
- Accelerating the deployment of flexible bioenergy technologies via market assessments and development of potential business plans.

Budget: 2 M€, Duration: 2018 - 2021

Low Carbon Flexibility with Renewable Solid Fuels

Performance of Circulating Fluidized Bed (CFB) & Bubbling Fluidized Bed (BFB) Boiler Technologies

Proven benefits

- Fuel flexibility
- Wide size range
- High efficiency
- High availability
- Low emissions
- Enables Bio Energy CCS

DNA Energy Management - Optimized Production Planning

Current Indicative values	Size range	Max Steam Parameters*	Min load	Load change	Cold start up	Warm start up
	[MW _e]		[%]	[%/min]	[h]	[h]
Bio/Multifuel CFB plant	30 – 300	565 °C 175 bar	30	5	10	4
BFB plant	5 – 130	540 °C 160 bar	15	6	8	4

Recycled wood

Industrial residues

Municipal solid waste

_

Agricultural residues

Flexibility limits of biomass power plants

Minimum load

- Two min load measurement campaigns has been done
- Development of furnace designs using CFD modelling
 - Several scenarios simulated
 - Final evaluation ongoing

Ramp rates

- Start up CFD simulation with higher burner load is done
- Dynamic CFB model has been developed to enable start up simulations
 - Several fast start ups has been simulated
- Refractory lab tests and field studies has been done

Decentralized biomass-based cogeneration

operation

flexible

Locally available residues

- wood chips
- low-quality wood chips
- mechanically pre-treated chipboard

- emissions, efficiency
- mass- and energy balance
- fast load ramps
- short start duration
- improved engine control

Local grid support

- operation in period with less VREelectricity available
- offer local grid support and balancing

Small-scale flexible CHP systems for local self-supply

- pre-treatment of different low-quality residues
 - standard wood chips, low-quality wood chips, chipboard
 - mechanical treatment, sieving, washing
- identification of optimum operating strategies for small-scale gasification unit
 - mixture ratio, water content, technical limitations
 - gas quality, efficiency, emissions, design and operation point
- further analysis and equipment
 - supported by FactSage, (Electrical) grid simulator, Hardware-in-the-loop Simulator
 - fuel and ash analysis

Solar enhanced biomass drying

- Scale up and system evolution from lab scale to improved pilot scale
- Initial experiments done with VTT's convective solar enhanced biomass dryer:

Scaled-up dryer

Main changes and improvements:

- Increasing drying capacity by installing a heat pump (25 kW) to the system
 - Integrated into an air supply unit
 - Pump is used to dry the drying air
 - Dryer can be used also in cloudy days, possibly also in winter (depending on profitability)
- Increasing solar collector capacity to 24 m²
- Building a new drying chamber
 - Possible to move and circulate raw material during drying – with vertical an vertical agitator and chain conveyor – resulting in even drying
 - Batch size up to 10 m³

Techno-economic assessment

- In Finland, potential annual drying season is seven months, with great fluctuation
- Solar enhanced drying suits well for solid biomass drying
- Payback times less than 10 years with 30% investment support and cost of electricity below 50 €/MWh.

DRYER PAYBACK TIME IN YEARS	30% investment subsidy		
Collector surface area of the solar system	90m²	5,000m ²	
Seasoned wood, 6 m ² system	21	14	
Seasoned wood, 12 m² system	18	12	
Fresh wood, 12 m ² system	50	34	
Seasoned wood, 70% solar energy enhancement	10	7	
Fresh wood, 70% solar energy enhancement	20	14	

Share of wind power: 60 % (-5.7%)

Co-production of power, steam and heat?

Liquid fuels for peaker plants?

Co-production of fuels, power and heat?

Bioenergy with demand side flexibility?

