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" Cost of wind and solar has decreased drastically

Unsubsidized Wind LCOE
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Unsubsidized Solar PV LCOE
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Source: Lazard’s levelized cost of energy analysis — Version 12.0
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C Offshore wind has massive potential

Offshore wind technical potential and electricity demand in 2018
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Source: |IEA Offshore Wind Outlook 2019




VaBLig;)s Variability is normal
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But variability increases with more wind
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ERA-Net project: Value-optimised use of biomass

<)
VaBgys in a flexible energy infrastructure

1. Development of new bioenergy solutions to serve energy markets with a high need for
flexibility;
» Solid-biomass boilers for back-up
» Pyrolysis-based intermediates
» Gasification plants co-producing heat, fuels and electricity
* Biogas plants for back-up

2. Significantly extending the flexibility of known bioenergy technologies;

|dentification of costs, benefits and development needs for potential bioenergy
concepts in a VRE dominated energy system,;

A. Hour-based generation planning
B. Production cost simulation for a full year (including forecasting errors)

4. Improved understanding about the economic, social and environmental sustainability of
biomass used in a flexible energy system; and

5. Accelerating the deployment of flexible bioenergy technologies via market assessments
and development of potential business plans.

Budget: 2 M€, Duration: 2018 - 2021




Low Carbon Flexibility with Renewable Solid Fuels
Performance of Circulating Fluidized Bed (CFB) & Bubbling Fluidized Bed (BFB) Boiler Technologies

DNA Energy Management - Optimized
Production Planning

Proven benefits ‘ - l
Fuel flexibility . T iy ||

It's a modular production
optimization and planning
system for heat and
electricity production
featuring:

— Load forecasting

— Electricity price forecasting

— Production optimization

— FElectricity trading

Wide size range
High efficienc

J Y DNA Energy Management
Optimized Production Planning

High availability
Low emissions

Enables Bio Bt ! e B ksl | 5 |
=Y 4 = il 8 | Production Energy System
=nergy CC3 i ) e /23 8 AR
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Current [ Max Steam
Indicative Parameters* change | startup | startup
values

[%/min] [h]

Bio/Multifuel 565 °C

CFB plant 300 175 bar S > 10 4
5-— 540 °C

BFB plant 130 160 bar 15 6 8 4
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Flexibility limits of biomass power plants

Minimum load
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= Two min load measurement campaigns has been done

B
1

= Development of furnace designs using CFD modelling
» Several scenarios simulated
* Final evaluation ongoing

Ramp rates

= Start up CFD simulation with higher burner load is done

= Dynamic CFB model has been developed to enable start up
simulations
» Several fast start ups has been simulated

= Refractory lab tests and field studies has been done

VTT Valmet 3>
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L Decentralized biomass-based cogeneration

Locally available residues Local grid support

» wood chips

 low-quality
wood chips
* mechanically
' Source: Spanner Re? (T?enewable Energy Experts) GmbH l

pre-treated
chipboard
* emissions, efficiency o fast load ramps DBFZ
e mass- and energy balance  short start duration
* improved engine control

 Operation in period
with less VRE-
electricity available

« offer local grid support
and balancing
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flexible operation
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Small-scale flexible CHP systems for local self-supply

= pre-treatment of different low-quality residues
» standard wood chips, low-quality wood chips, chipboard

* mechanical treatment, sieving, washing

= dentification of optimum operating strategies for small-scale gasification unit
* mixture ratio, water content, technical limitations

» gas quality, efficiency, emissions, design and operation point

= further analysis and equipment
» supported by FactSage, (Electrical) grid simulator, Hardware-in-the-loop Simulator DBFZ
» fuel and ash analysis

11
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Solar enhanced biomass drying

= Scale up and system evolution — from lab scale to
iImproved pilot scale

= |nitial experiments done with VTT’s convective solar
enhanced biomass dryer:

Tl

3 solar collectors 3 solar callectors

(tot. 6 m?) faced (tot. 6 m?) faced
to south-west to south-east

AN

Ambient Heat I;|1eat
- exchanger
ar recovery | | (iquidair) \‘
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VaBLif/y)s Scaled-up dryer

Main changes and improvements:

= Increasing drying capacity by
Installing a heat pump (25 kW) to the
system
* Integrated into an air supply unit
 Pump is used to dry the drying air

» Dryer can be used also in cloudy days,
possibly also in winter (depending on
profitability)

* Increasing solar collector capacity to
24 m?

= Building a new drying chamber

» Possible to move and circulate raw
material during drying — with vertical an
vertical agitator and chain conveyor —
resulting in even drying

e Batch size up to 10 m3

VIT

Testing in spring 2020
Experiments in summer 2020




VaBigy)s
g

Techno-economic

assessmen t DRYER PAYBACK TIME IN YEARS

u In Finland pOtential annual drylng Collector surface area of the solar system 90m? 5,000m?
season is seven months, with great Seasoned wood, 2 ”
fluctuation 6 m* system

= Solar enhanced drying suits well for T 18 12
solid biomass drying

. . Fresh wood, 12 m2 system 50 34
= Payback times less than 10 years with
30% investment support and cost of Seasoned wood, : i, :
.. ) n nhancemen
electricity below 50 €/ MWh. LR
Fresh wood, 20 14

70% solar energy enhancement

Raitila, J., Tsupari, E. Feasibility of Solar-Enhanced Drying of Woody Biomass.
Bioenerg. Res. (2019) doi:10.1007/s12155-019-10048-z
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VaBify)s Duration curve for power
g generation in the Nordics

Share of wind power: 0 %

M <1000 h
M 1000 - 4500 h
W 4500 - 8000 h
W > 8000 h

Source: Kiviluoma (2016). Balancing with Bioenergy (presentation for IEA Bioenergy report “Bioenergy in balancing the grid”).
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VaBify)s Duration curve for power
g generation in the Nordics

Share of wind power: 10 %

M <1000 h
B 1000 - 4500 h
™ 4500 - 8000 h
W > 8000 h

Source: Kiviluoma (2016). Balancing with Bioenergy (presentation for IEA Bioenergy report “Bioenergy in balancing the grid”).
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VaBify)s Duration curve for power
g generation in the Nordics

Share of wind power: 20 %

70

M <1000 h
B 1000 - 4500 h
™ 4500 - 8000 h
W > 8000 h

Source: Kiviluoma (2016). Balancing with Bioenergy (presentation for IEA Bioenergy report “Bioenergy in balancing the grid”).
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VaBify)s Duration curve for power
g generation in the Nordics

Share of wind power: 30 %

70

M <1000 h
B 1000 - 4500 h
™ 4500 - 8000 h
W > 8000 h

Source: Kiviluoma (2016). Balancing with Bioenergy (presentation for IEA Bioenergy report “Bioenergy in balancing the grid”).
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VaBi.{))s Duration curve for power
g generation in the Nordics

Share of wind power: 40 % (-0.6%)

70

M <1000 h
B 1000 - 4500 h
™ 4500 - 8000 h
W > 8000 h

Source: Kiviluoma (2016). Balancing with Bioenergy (presentation for IEA Bioenergy report “Bioenergy in balancing the grid”).
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VaBi.{))s Duration curve for power
g generation in the Nordics

Share of wind power: 50 % (-2.5%)

70

M <1000 h
B 1000 - 4500 h
™ 4500 - 8000 h
W > 8000 h

Source: Kiviluoma (2016). Balancing with Bioenergy (presentation for IEA Bioenergy report “Bioenergy in balancing the grid”).
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VaBi.{;)s Duration curve for power
g generation in the Nordics

Share of wind power: 60 % (-5.7%)

70

W< 1000 h
M 1000 - 4500 h
W 4500 - 8000 h
W > 8000 h

Source: Kiviluoma (2016). Balancing with Bioenergy (presentation for IEA Bioenergy report “Bioenergy in balancing the grid”).
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Duration curve for power
generation in the Nordics

Share of wind power: 60 % (-5.7%)

Above >50% wind share, 0 GW need for capacity
running 8000 hlyr.

However, 20 GW need for
4500 — 8000 h and

1000 — 4500 h generation
This generation needs to be near zero carbon
How to make the economics work?
What is the role of bioenergy in this?

22



-
~80% of total CapEx running 8000 h/yr
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-
~70% of total CapEx running 8000 h/yr
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~80% of total CapEx running 8000 h/yr

Anaerobic
digestion

Biomass Methanation

Hydrogen
enhancement

B Baseload
I Flexible

Bioenergy with demand side flexibility?

Surplus
renewable
energy

N

Electrolysis
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