

Aktuelle Trends und Entwicklungen bei BioDiesel und Pyrolyseöl

Peter Pucher, R&D BDI - BioEnergy International AG Wien; 18-3-2016

BDI at a glance

Austrian based, highly professional plant engineering and construction company

Tailor-made turn-key solutions

Own biodiesel & biogas technologies "from waste to value"

More than **40 reference plants** on 4 continents, since 1991

Strong in-house r & d (5 – 10% of annual revenue)

Key figures:

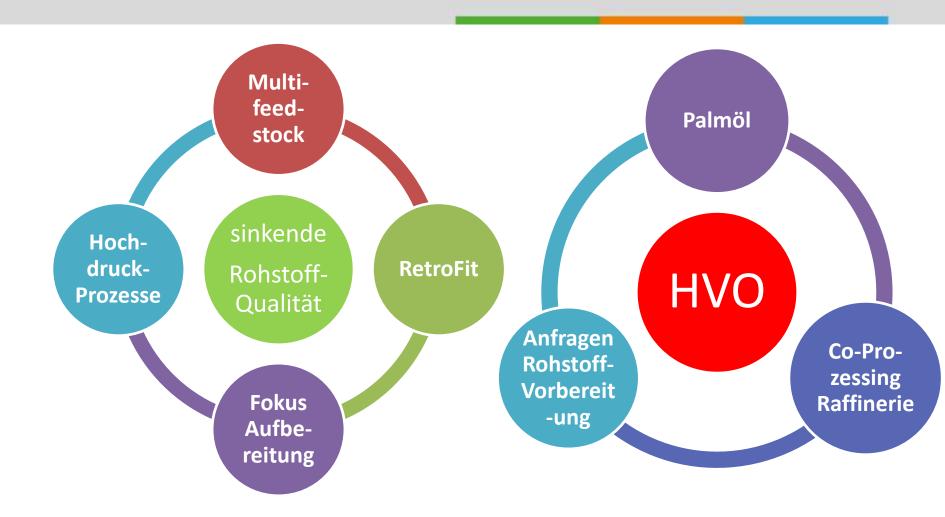
Staff: 125 employees

Turnover: € 30 - 40 Mio

Equity ratio: approx. 60%

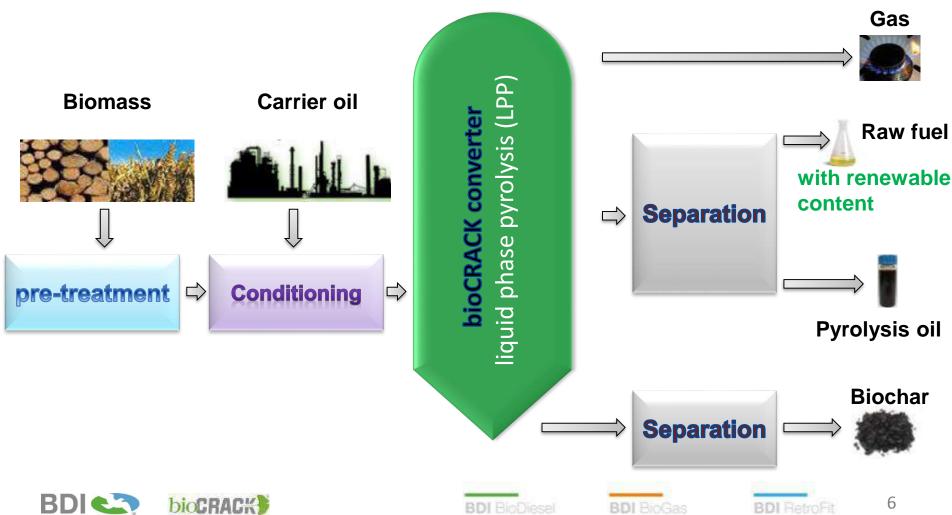
Stock market listed in Frankfurt

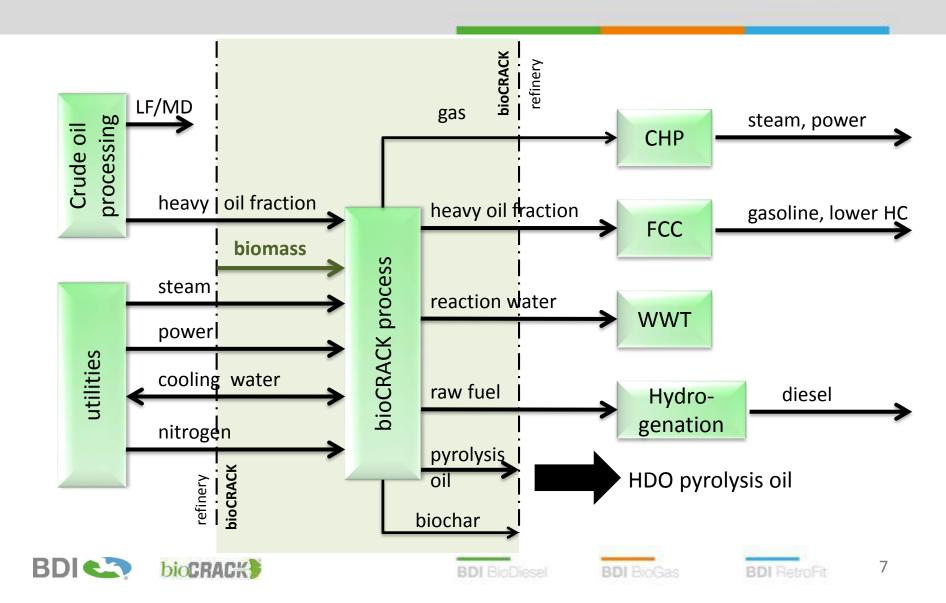
Trend BioDiesel Markt



Bildnachweis: © Tribalium, Shutterstock

Trend BioDiesel - Technik





bioCRACK - Prozess Schema

bioCRACK - Raffinerie Integration

Pyrolyseöl-Parameter

	Einheit	Flüssigphasenpyrolyseöl	Diesel
Wassergehalt	[Gew%]	50	0,02
Heizwert	[MJ/kg]	8,7	42,5
Dichte	[kg/m³]	1070 bei 25°C	820-845 bei 15°C
Viskosität	[mPa s]	4 bei 20°C	2 – 4,5 bei 40°C
Kohlenstoffgehalt	[Gew%]	25,6	85,9
Wasserstoffgehalt	[Gew%]	9,2	13,3
Sauerstoffgehalt	[Gew%]	64,9	<1
Stickstoffgehalt	[Gew%]	<1	<1

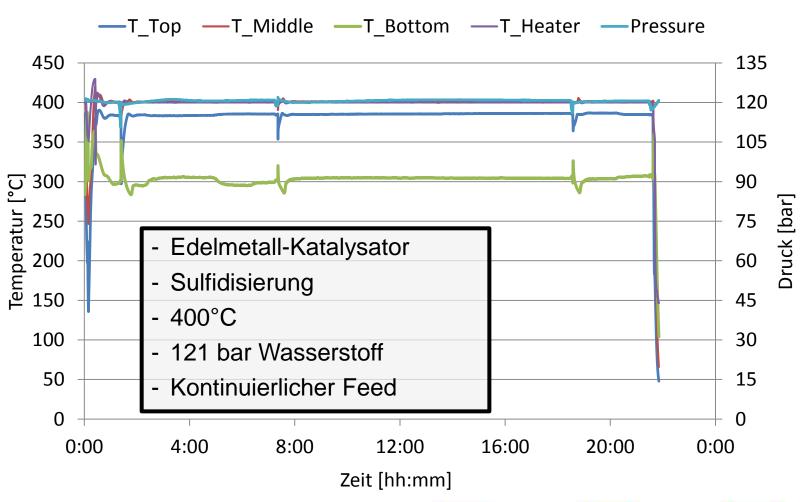
Pyrolyseöl ist ein Mischung aus über 300 verschiedenen Komponenten

Kontinuierliche HDO

Hydro Deoxygenierung:

- Hydrierung mit Wasserstoff und Katalysator
- Reduktion von Sauerstoff-Gehalt gegen null
- Wechsel Löslichkeit polar -> unpolar
- Drop-In Treibstoffe aus Lignocellulose

Setup


- Kontinuierlicher Rohrreaktor
 - Max. 220 bar und 550°C
 - Katalysator als Festbett
- 2 Pumpen für ein Co-Prozessing
- Heizmantel mit 3 Temperaturmessstellen
- 2 Produktbehälter

Temperatur und Druckverlauf

Erste Ergebnisse: Massen- und Elementbilanz

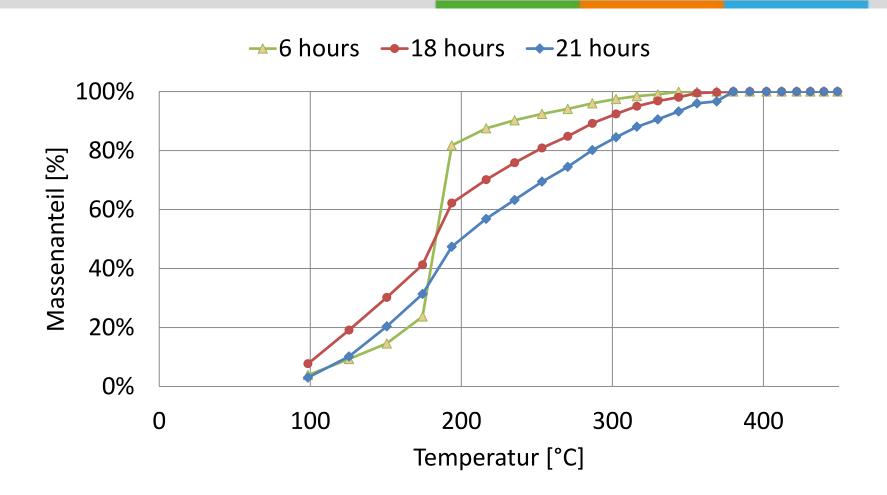
	C [%]	H [%]	Rest [%]	Masse [g]	C [g]
Pyrolyseöl	,	9,45	69,15	109,06	23,3
Organische Phase	85,9	13,4	0,7	12,43	10,7
	Kohlenstofftransfer		45,7%		
	Deoxgenierungsrate		99%		

- Kontinuerlicher Betrieb möglich
- Hohe Deoxigenierung erreichbar!
- Kohlenstoff-Transfer gut

Erste Ergebnisse: Wassergehalt

Phase	Wassergehalt
Pyrolyseöl	58,9%
Organische Phase 6 h	0,2%
Organische Phase 21 h	0,1%
Wasserphase 6 h	95,3%
Wasserphase 21 h	99,1%

- Zwei Produktphasen polar/unpolar
- Wenig Restwasser in Treibstoff-Fraktion
- Relativ unbelastetes Wasser



Erste Ergebnisse: Siedebereich

bioCRACK Outlook

bioCRACK Pilotprojekt 2015 abgeschlossen:

 Verstärkte Vermarktungs-Aktivität über Tagungen und direkten Kontakt zu Raffineriebetreibern

Fortsetzung F&E im Bereich Pyrolyseöl:

- Start FFG-Projekt "bioBOOST"
- Kontinuierliche HDO von Pyrolseöl im Labormaßstab
- Katalysator Stabilität
- Prozess Optimierung

bioCRACK Partners

BDI — BioEnergy International AG

OMV Refining and Marketing GmbH

Institute of Chemical Engineering and Environmental Technology

Prof. Dr. M. Siebenhofer

Austrian Climate & Energy Fund "New Energies 2020" bzw. FFG Basisprogramme

from Vaste en 181°

