

CO₂ Capture in the Steel Industry

Review of the Current State of Art

Stanley Santos

IEA Greenhouse Gas R&D Programme
Cheltenham, UK

Industry CCS Workshop

Vienna, Austria 28th April 2014

IEAGHG Activities on CCS for the Iron & Steel Industry

Reports

- 2013-04 "Understanding the Economics of Deploying CO₂ Capture Technologies in an Integrated Steel Mill"
- 2013-TR3 "Overview of the Current State and Development CO₂ Capture Technologies in the Ironmaking Process"

- Total Cost of the Study:
 £ 440.000
- IEA GHG Contribution: ~ £ 120.000

swerea MEFOS

Stakeholders Engagement

- 1st Workshop (Nov. 2011)
 Dusseldorf, Germany
 in collaboration with VDeH,
 Swerea MEFOS
- 2nd Workshop (Nov. 2013)
 Tokyo, Japan
 in collaboration with IETS, World Steel,
 Swerea MEFOS

Presentation Overview

Brief Introduction

- Global Steel Industry
- Overview to the Steel Production

Capture of CO₂ from Blast Furnace Gas

- ULCOS Programme Oxygen Blown BF with TGR
- COURSE50 Programme Chemical Absorption & Physical Adsorption
- POSCO / RIST Programme Chemical Absorption

Capture of CO₂ from Alternative Ironmaking Process

- Direct Reduction Ironmaking
 - MIDREX, ENERGIRON (HYL), ULCORED
- Smelting Reduction Ironmaking
 - COREX, FINEX, HISARNA
- Summary / Concluding Remarks

World Crude Steel Production

(Data and Figure from World Steel)

- Total Crude Steel Production has reached 1.545 Billion Tonnes of crude steel in 2012.
 - As compared to 2002 (905.2 million tonnes), crude steel production has increased by ~70%.
- Global CO₂ Emissions from the steel industry is roughly at ~2.3-2.5Gt/y
- Major Steel Producing Regions
 - China (716.5 million tonnes)
 - EU27 (168.6 million tonnes)
 - N. America (121.6 million tonnes)
 - CIS (111.0 million tonnes)
 - Japan (107.2 million tonnes)
 - India (77.6 million tonnes)

Overview of Steel Production

(Picture from VDEH)

World Crude Steel Production

Data estimated from WSA & VDEH statistics (2012)

Crude Steel Production

Metallic Charge

OVERVIEW OF STEEL PRODUCTION VIA BF/BOF ROUTE

NOTE:

Presentation is derived from the results of IEAGHG Study (Report No. 2013-04)

Integrated Steelmaking Process (BF/BOF)

Raw Materials Preparation Plants

Coke Production

Ore Agglomerating Plant (Sinter Production)

Lime Production

Ironmaking

Blast Furnace

Hot Metal Desulphurisation

Steelmaking

Basic Oxygen Steelmaking (Primary)

Secondary Steelmaking (Ladle Metallurgy)

Casting

Continuous Casting

Finishing Mills

Hot Rolling Mills (Reheating & Rolling)

Point Source Emissions

(Results of IEAGHG Study – An Example)

CO₂ Emissions are released at various stacks within the integrated steel mill.

UNIT	Source of CO ₂ Emissions	Emissions (kg/t HRC)	Annual Emission (t/y)
100	Coke oven flue gas	191.37	765,495
100	Coke oven gas flare	3.30	13,196
200	Sinter plant flue gas (CO2+CO)	289.46	1,157,825
300	Hbt Stove flue gas	415.19	1,660,769
400/1300	PCI Coal drying, torpedo car and ladle heating (HM Desulphurisation) diffue emissions	7.76	31,042
300	Blast Furnace Gas flare	19.73	78,931
500600	Basic Oxygen Furnace gas flared and systemlosses, SM diffuse Enrissions	51.02	204,089
700	O Continuous Casting - diffuse emissions (fromslab cutting)		3,188
800	Reheating Furnace flue gas	57.71	230,833
900	Hot Polling Mills - diffuse emissions (from cutting and scarfing)	0.04	179
1000	Lime Plant flue gas	71.62	286,493
1200	Power Rant flue gas	982.13	3,928,513
1300	Ancillaries transport fuel emissions (trucks and rails)	4.00	16,000
	Total Emissions	2094.14	8,376,554

Carbon Balance of Ironmaking Process

(Results of IEAGHG Study)

Direct CO₂ Emissions of an Integrated Steel Mill (REFERENCE) Producing 4 MTPY Hot Rolled Coil 2090 kg CO₂/t HRC (2107 kg CO₂/thm)

Carbon Balance of Ironmaking Process

Carbon In (kg C/thm)	Carbon Input (kg C/thm)		Carbon Output (kg C/thm)	
Coke	312.4	Hot Metal	47.0	
Limestone	1.5	BF Screen Undersize	6.3	
PCI Coal	132.2	Dust & Sludge	8.0	
COG	1.3	BFG Export	266.4	
		BFG Flared	5.4	
		Hot Stove's Flue Gas	114.1	
Total	447.5	Total	447.2	

80-90% of the carbon that caused to the CO₂ emissions of the steel production.

Composition of Off-Gases

(Results of IEAGHG Study – An Example)

Wet Basis (%vol.)	Coke Oven Gas (COG)	Blast Furnace Gas (BFG)	Basic Oxygen Furnace Gas (BOFG)
CH ₄	23.2	- NA -	- NA -
H ₂	60.1	3.6	- NA -
со	3.9	22.1	56.9
CO ₂	1.0	22.3	14.4
N ₂	5.8	48.3	13.8
O ₂	0.2	- NA -	- NA -
H₂O	3.2	3.2	12.2
Other HC	2.7	- NA -	- NA -
LHV (MJ/Nm³) – wet basis	17.5	3.2	7.5
Users of the Off-Gases	Hot Stoves, Coke Ovens, Lime Kilns, Reheating Furnaces and others	Hot Stoves, Power Plant	Power Plant

Treated BFG (Components)	Units	Composition
CO ₂	%(v/v) – dry	17 - 25
со	%(v/v) – dry	20 - 28
H ₂	%(v/v) – dry	1-5
N ₂ / <u>Ar</u>	%(v/v) – dry	45 -55 (balance)
H ₂ S	mg/Nm³	10 - 20
Particulate Matter	mg/Nm³	1-10
Heavy Metals		
Mn	mg/Nm³	0.10 - 0.29
Pb	mg/Nm³	0.01 - 0.05
Zn	mg/Nm³	0.03 - 0.17

NOTE:

- Blast Furnace is a reduction process.
- CO2 capture from BFG cannot be classified as post-combustion or oxy-combustion.

The 4U CS process routes

Coal & sustain	able biomass	Natural gas	Electricity
Revamped BF	Revamped BF Greenfield		Greenfield
ULCOS-BF	HIsarna	ULCORED	ULCOUIN
Pilot tests (1.5 t/h) Demonstration under way	Pilot plant (8 t/h) start- up 2010	Pilot plant (1 t/h) to be erected in 2013?	Laboratory

Carbon Balance of Ironmaking Process

Results from IEAGHG Study - Case 3: OBF with MDEA/Pz CO₂ Capture

Direct CO₂ Emissions of an Integrated Steel Mill (with OBF & MDEA CO₂ Capture) Producing 4 MTPY Hot Rolled Coil
1115 kg CO₂/t HRC (1124 kg CO₂/thm)

Carbon Balance of Ironmaking Process

Carbon Input (kg C/thm)		Carbon Output (kg C/thm)	
Coke	227.7	Hot Metal	47.0
Limestone	0.7	BF Screen Undersize	4.6
PCI Coal	132.2	Dust & Sludge	8.0
Natural Gas	12.0	OBF PG Export	64.5
		PG Heater Flue Gas	12.0
		CO2 Captured	236.3
Total	372.7	Total	372.4

UCS Blast Furnace (TGR BF)

ULCOS BF

(Experimental Results from Lulea's EBF Work)

Data courtesy of Tata Steel

COURSE50 Programme

LKAB's EBF Trial

Schedule: 16th April ~11th May, 2012

Ferrous Material:Sinter70%-Pellet 30%

Coke, PC:from SSAB

Raceway

Basket Sample

Vertical Probe

Upper Probe

[Probing, Sampling]
[Operational Data, Analyzing]

Upper shaft Tuyere

[Hot Top Gas Injection]

Lower Shaft Tuyere

Reformed COG Injection

Blast Tuyere

COG Injection]

Lower Probe Inclined

Probe

Figures are quoed from Swerea/MEFOS and LKAB brochure

COURSE50 Programme

CO₂ Capture Pilot Plants

CAT-1 & CAT-10

at Nippon Steel Kimitsu Works

CAT-1 1 t/d CO₂ for solvent testing

Off Gas

Regenerator

Reboiler

CAT-30 30 t/d CO₂ for process improvement evaluation

ASCOA

at JFE Steel Fukuyama Works

Absorber

POSCO – RIST Programme

CO₂ Capture Using Aqueous Ammonia (II): Milestones

□ R&D history

- Lab-scale research (2006~2007)
- 1st stage pilot plant research (2008-2010): 50 Nm3-BFG/hr (Dec. 2008)
- 2nd stage pilot plant research (2010-2014): 1,000 Nm³-BFG/hr
- One-site pilot tests are on-going (May 2011-), Purification/Liquefaction facilities integrated (Apr. 2012-)

□ 2nd Pilot Plant Spec.

Item	Spec.
Feed Gas	BFG (Blast Furnace Gas, CO ₂ ~ 22%)
Feed Gas Flow rate	1,000Nm³/h
Absorbent Sol.	<10% NH ₃
Product CO ₂	10 t-CO ₂ /d, 0.5MW power plant
5 7 6 1 100	>95% (Gas)
Purity of product CO ₂	>99.8% (Liquid)

☐ Test Results

CO₂ recovery > 90%, L-CO₂ purity > 99.5%

☐ Further Plan

- · Long-term continuous operation
- Additional pump around and higher NH3 concentration in absorbent solution
- · Basic engineering design for commercial scale

Dry ice

CO₂ Conversion using COG Reforming (I): Concept/Feature

- ☐ Background
- -Need for the conversion of capture CO₂ and the utilization in steel industry
- ☐ Steel-industry-specific CO₂ conversion and utilization

[Conceptual scheme for production and utilization of the reducing gas in the steel process]

- Mass production of the H₂ and/or CO rich gases by using COG reforming with steam and CO₂
- Require highly coking-resistant catalyst for the COG reforming
- Require optimization of reaction condition, heat integration, and scale-up by using reactor modeling

CAPTURE OF CO₂ FROM ALTERNATIVE IRONMAKING PROCESS

- Direct Reduction Ironmaking Process
- Smelting Reduction Ironmaking Process

Direct Reduction Ironmaking

70 Process Developments

From "Aachener Drehofen" to "Zam Zam" Process

Only Midrex & Energiron (HYL) reached successful commercialisation

Picture Courtesy of VDEH

MIDREX Plant w/o CO₂ Removal (Picture Courtesy of MIDREX)

MIDREX Plant with CO₂ Removal

MIDREX PLANT with CO2 Removal

Reference Plant

(Picture Courtesy of Siemens VAI & Essar Steel)

- NO standalone Midrex Plant that removes CO₂ from the DRI shaft reactor's off-gas.
- However, ESSAR Steel employed partial removal of CO₂ using VPSA at their Hazira Steelworks (India).
 - Steelworks is hybrid plant where COREX gas is used as fuel to the reformer of the MIDREX plant.
 - 2 Midrex modules (#5 & #6) equipped with CO₂ removal system
 - VPSA off gas is mixed with NG as feedstock to the reformer. This reduces NG consumption.
 - VPSA tail gas with ~60% CO₂, ~20% CO, ~5%H₂ is used as heating fuel within the steelworks

ENERGIRON – HYL Technology

ENERGIRON WITH CO₂ CAPTURE REFERENCE PLANTS

- CO₂ removal system used by Energiron / HYL is a competition between Chemical Absorption (i.e. MDEA) vs Physical Adsorption (VPSA / PSA)
- List of Reference Plants with CO₂ Capture
 - Mexico
 - AM Lazaro Cardenas (2 modules) food grade CO₂ 2007/2009
 - Ternium 4M, 2P (2 modules) food grade CO₂
 - India
 - Welspun Maxsteel (1 modules food grade CO₂ 2009
 - Abu Dhabi
 - Emirate Steel (2 modules) EOR grade CO₂ under construction

Smelting Reduction Ironmaking

45 Process Developments

From "AISI Direct Steelmaking" to "VOEST" Process Only COREX & FINEX reaching commercialisation

COREX Process

COREX with CO₂ Removal

Commercially Operated Plant based on VPSA or PSA

- No standalone COREX plant that removes CO2 from their export gas.
- However, 2 Plants with COREX gas used as feedstock to Midrex do remove the CO₂.
 - Saldanha Steelworks, S. Africa (1 module commissioned in 2000)
 - JSW Vijayanagar Steelworks, India (2 modules, commissioned in 2013)

Production of DRI (Basis: Corex C-2000)

FINEX Process

FINEX Process

Cos	Composition (%)			
Gas	СО	CO ₂	H ₂	N ₂
Off-Gas	36	33	15	11
Product Gas	53	3	25	18
Tail Gas	17	66	4	3

Future of FINEX with CCS

HISARNA (ULCOS Programme)

3. The HIsarna pilot plant

IEAGHGAETS from and steel Industry CCUS and Process Integration Workshop, Tokyo, Japan, 4 – 7 November 2013. Confidential

Experimental plant (1994-1998) UCSS

But who will be the winner ???

Stahl-Zentrum

Concluding Remarks

(Figures adapted from VDEH)

- So many ways to produce steel...
- What is the right way to reduce CO₂ emissions depends on so many factors...
 - Raw materials (coke, iron ore, scrap,...)
 - Energy availability
 - Cost (Economics)
- It has been recognised that CCS will play an important role in reducing GHG emissions. To successfully deploy CCS, issues regarding <u>MARKET COMPETITIVENESS</u> should be addressed

BF

Nucor Louisiana Project in the U.S.A. (2.5Mt/y)

 With the cheap shale gas, construction of the large-sized gas DR plant was started in the U.S. instead of construction of the BF 20

1

Voestalpine constructing MIDREX direct reduction plant in Texas, USA

- The decision on the construction of the Voestalpine direct reduction plant in North America has been made.
- The plant will be constructed on just outside the city of Corpus Christi, Texas, USA.
- The planned facilities are designed for an annual capacity of around 2 million tons of HBI and DRI.
- The investment volume is around EUR 550 million.
- The plant is due to begin operations in early 2016.
- This will provide the Austrian steel production sites in Linz and Donawitz with access to costefficient and environmentally-friendly HBI and DRI pre-materials, ensuring their competitiveness over the long-term.

Thank You

Stanley Santos
IEA Greenhouse Gas R&D Programme
stanley.santos@ieaghg.org