

IEAGHG Industry Workshop 28 April 2014, Vienna Simon Bennett

Reading list for this talk

CCS Roadmap 2013: key findings

- CCS is a critical component in a portfolio of low-carbon energy technologies, contributing 14% of the cumulative emissions reductions between 2015 and 2050 compared with business as usual.
- The individual component technologies are generally well understood. The largest challenge is the integration of component technologies into large-scale demonstration projects.
- Incentive frameworks are urgently needed to deliver upwards of 30 operating CCS projects by 2020.
- CCS is not only about electricity generation: 45% of captured CO₂ comes from industrial applications between 2015 and 2050.
- The largest deployment of CCS will need to occur in non-OECD countries, 70% by 2050. China alone accounts for 1/3 of the global total of captured CO₂ between 2015 and 2050.
- The urgency of CCS deployment is only increasing. This decade is critical in developing favourable conditions for long-term CCS deployment.

CCS roadmap 2013: Relevant messages

- Need to raise the profile of CCS in industrial applications to a level alongside CCS in the electricity sector
- Different sectors are at different stages of development
- Government policy for CCS in industrial applications needs to be sensitive to the international competitiveness of the sectors concerned
- Different policy instruments will be needed
 - Generate knowledge of CCS in industrial applications in the near term
 - Make it a cost-effective proposition in the longer-term
- The time to start building capacity and shaping expectations is now

>20% of global CO₂ & growing demand

IEA 2DS: 45% of stored CO₂ from industry

A high % of each sector would need CCS

For these sectors, 2050 is only one investment cycle away Low-carbon production routes need to be available as early as 2025

Different regions, different needs

Clear difference in scale and integration

- Projects on processes with relatively low cost impacts of CO₂ capture
 - Quest (refining H₂, 1.08 MtCO₂/yr stored, Canada, Shell, 2015)
 - Gorgon (gas processing, 4 MtCO₂/yr stored, Australia, Chevron, 2015)
 - Illinois (biofuels, 1 MtCO₂/yr stored, US, ADM, 2014)
 - Lula (gas processing, 0.7 MtCO₂/yr for EOR, Brazil, Petrobras, 2013)
- Projects on processes with relatively high cost impacts of CO2 capture
 - Brevik (cement, 0.7 ktCO₂/yr vented, Norway, Norcem, 2014)
 - SkyMine (cement, 83 ktCO₂/yr utilised, United States, Skyonic, 2014)
 - TCM (refining FCC, 80 ktCO₂/yr vented, Norway, Gassnova, 2012)
 - Florange (steel, 0.7 MtCO₂/yr stored, France, ArcelorMittal, cancelled)

Why do industry sectors drag their feet?

- Two critical factors
 - 1. Exposure of a sector in a given country to international trade
 - 2. The relative impact that CCS would have on production cost
- Compounding issues (especially in Europe)
 - Economic and financial crisis
 - Intra-sectoral coordination dilemma first-mover (dis)advantage
 - Regulatory dilemma more mature technologies permit regulation
 - Inter-sectoral misalignment of perceptions of responsibility/timing
 - Inter-regional misalignment of climate policy and capacity expansion

Trade exposure vs. CCS cost impact

Source: IEA report to the Clean Energy Ministerial 2013 Cost index impact the impact of adding CCS to the production cost of a unit of output

Who should invest in knowledge?

Who benefits?

- Countries with high value-added from primary/process industries
- Countries with exportable raw materials (coal, oil, gas, iron ore etc.)
- Firms wishing to be competitive in a low carbon world
- The public, who will use fossil fuels in excess of the climate's capacity
- Purchasers of 'green' CO₂ (EOR, chemicals, fuels)
- Governmental funders don't need to be hosts; knowledge is transferrable
 - Pilot projects could be in the country exporting (e.g. iron ore exporter)
 - Demo projects could be in region of capacity expansion (e.g. ore user)

Collaboration will be key

Resources are limited in governments and trade-exposed sectors today

There are good examples of collaboration

- ULCOS (Ultra-Low CO2 Steel), since 2004
 - Evaluated technologies to reduce CO₂ intensity by >50%; 2 pilot tests
 - Up to 2010, funded by 48 industry members (60%) and EC (40%).
 - Patents owned and managed by inventor firm, but use rights shared
- ECRA (European Cement Research Academy), since 2003
 - Considers CO₂ capture designs and economics, including lab-scale test
 - 40 cement producers (3 of 4 main global equipment suppliers)
 - No public funding
 - IPR waived by members, who share all results
- Plus: COURSE50, CO2 Capture Project
- But, EU sectoral roadmaps are defensive about CCS (steel, cement, paper) and firms are yet to see CCS as something beneficial in the long-run. Need to reduce the 'threat' of CCS and raise the rewards from innovation

Seven key actions for next seven years

- Introduce financial support mechanisms for demonstration and early deployment.
- Develop laws and regulations that effectively require new-build power capacity to be CCS-ready.
- Significantly increase efforts to improve understanding among the public and stakeholders of CCS technology.
- Implement policies that encourage storage exploration, characterisation and development for CCS projects.
- Reduce the cost of electricity from power plants equipped with capture through continued technology development.
- Prove capture systems at pilot scale in industrial applications.
- Encourage efficient development of CO₂ transport infrastructure.

thank you for your attention

iea.org/topics/ccs/ccsroadmap2013