

IEA Solar Power and Chemical Energy Systems Solar PACES

Prof. Robert Pitz-Paal SolarPACES Acting Chair April 7, 20110 Vienna, Austria

What is the IEA?

Australia

Belgium

Czech Republic

Finland

Germany

Hungary

Italy

Republic of Korea

The Netherlands

Norway

Spain

Switzerland

United Kingdom

- Established in November 1974
- Objectives:
 - ✓ Reduce dependence on oil
 - ✓ Increase energy efficiency
 - ✓ Conserve energy resources
 - ✓ Develop coal, natural gas, nuclear power, and renewables
- 26 member countries
- 40 international cooperative agreements including:

SolarPACES

Photovoltaic Power Systems Solar Heating and Cooling Wind Energy Systems Ocean Energy Systems

Bioenegy

Austria

Canada

Denmark

France

Greece

Ireland

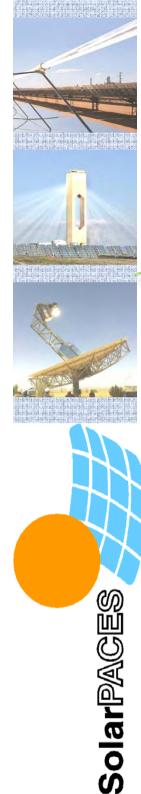
Japan

Luxembourg

New Zealand

Portugal

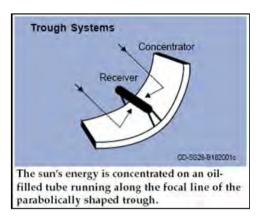
Sweden

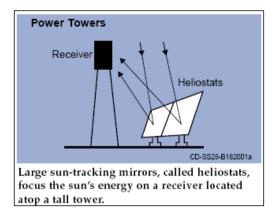


Turkey

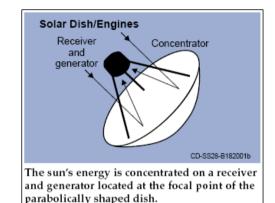
United States

SolarPACES Countries


Interested: India, Portugal, Greece, Turkey, Jordan, and Chile



Concentrator Optics


Linear Concentrator

- Parabolic 2-D shape
- Focal Length ~ 3m
- Tracks E to W
- CR ~ 30 to 40
- Fresnel reflector may be utilized

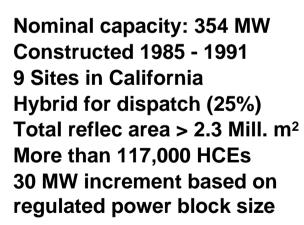
Point-Focus Central

- Parabolic 3-D shape
- Heliostats track in azimuth and elevation
- Focal Length ~ 100sm
- CR ~ 800

Point-Focus Distributed

- Parabolic 3-D shape
- Tracks on Sun in azimuth and elevation
- Focal Length ~ 4 m
- CR ~ 3000

Parabolic Trough Technologies


SEGS (US 1985 – 1991)

Nevada Solar One (US 2007) Andasol (Spain 2009)

Nominal capacity: 64 MW
Construction In 16 months
250 Acre solar field
30 minutes of TES
Capital invest: \$266 million
105% of planned
performance
for the first 18 months of
operation

Nominal Capacity: 44.9 MW
Two-Tank Molten-Salt Storage
7 full-load hours of storage
Capital Investment: 260 mi€
549,380 m² of trough
collectors
28,500 tonnes of molten salt

SolarPACES

Power Tower Technologies

Solar Two Experiment (1996 – 1999) US

10 MW Capacity
Molten Salt WF/TES
Receiver η = 88%
η of Storage > 98%
Dispatchability
demonstrated

PS 10 (2007) PS 20 (2009) Spain

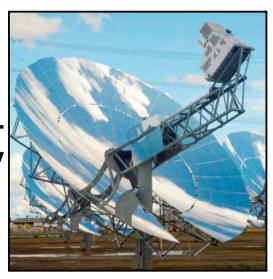
11 MW & 20 MW Capacity
Once-through steam boiler
1 Hour TES (steam)
1878 helios (120 m² each)
Tower height 100m/ 160m
73 GWhr/annually

SEDC Demo (2008) Israel

5 MWt Capacity
Direct Solar-toSteam
High Temp. 550° C
Flat Glass Mirrors
Air Cooled
60 m receiver tower
1,641 helists (7 m²)

Sierra Demo (2009) US

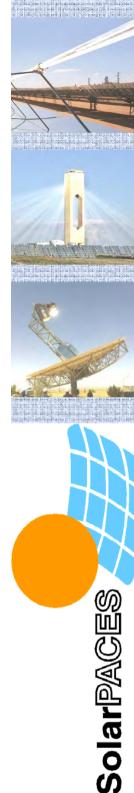
5 MW Demonstration Plant (two towers) 46-MW Standard module (16 towers) Small, flat mirrors Unique heliostat control system



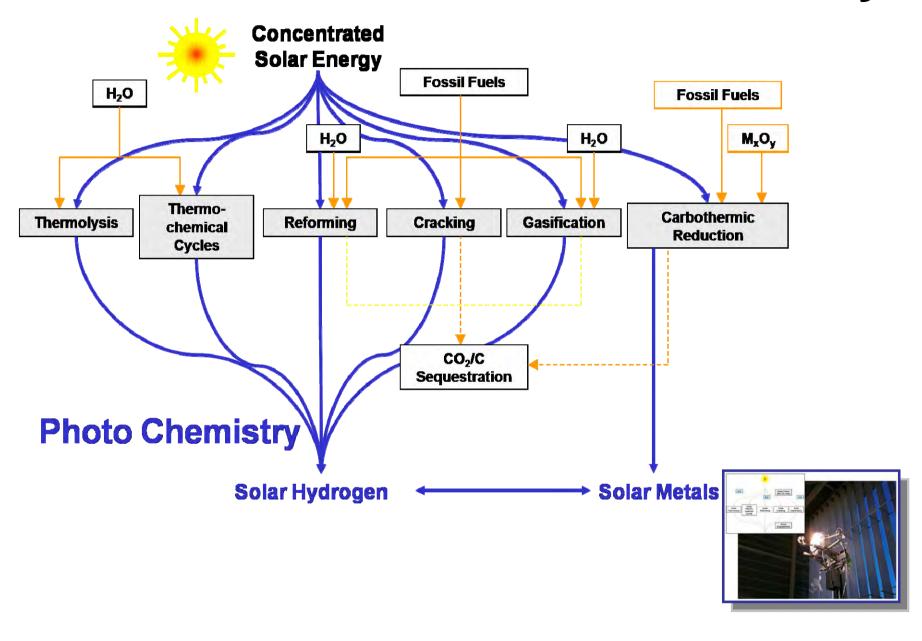
CSP Dish Stirling Systems

Utility-Scale
System:
25 kW system
Peak (net solar-toelectric) efficiency
31.25%

Autonomous operation



Distributed
Generation
System:
10 kW system
Autonomous
operation



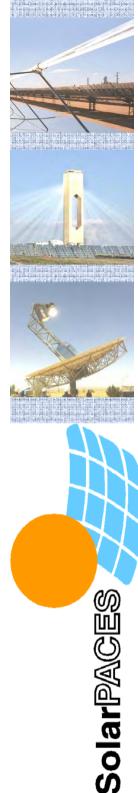
Distributed
Generation
System:
3 kW system
120/240 Volts AC
Autonomous
operation

Solar Chemistry

SP Vision and Mission

We developed Vision and Mission Statements, and a Strategic Objective to guide our activities.

IEA SolarPACES VISION


Our vision is that concentrating solar technologies contribute significantly to the delivery of clean, sustainable energy worldwide.

IEA SolarPACES MISSION

Our mission is to facilitate technology development, market deployment and energy partnerships for sustainable, reliable, efficient and cost-competitive concentrating solar technologies by providing leadership as the international network of independent experts.

Organization of SolarPACES

GLOBAL MARKET INITIATIVE

Mr. Rainer Aringhoff

Dr. Fred Morse

SolarPACES Executive Committee
Chair: Dr. Thomas R. Mancini
Vice Chair: Dr. Robert Pitz-Paal
Vice Chair: Dr. Michael Epstein
EXCO Secretary: Dr. Christoph Richter

Shared Tasks with PVPS and SHC IAs

TASK I

Concentrating Solar Electric Power Systems OA: Mr. Mark Mehos NREL, USA Concentrating Solar
Technology and Applications
OA: Mr. Peter Heller
DLR, PSA

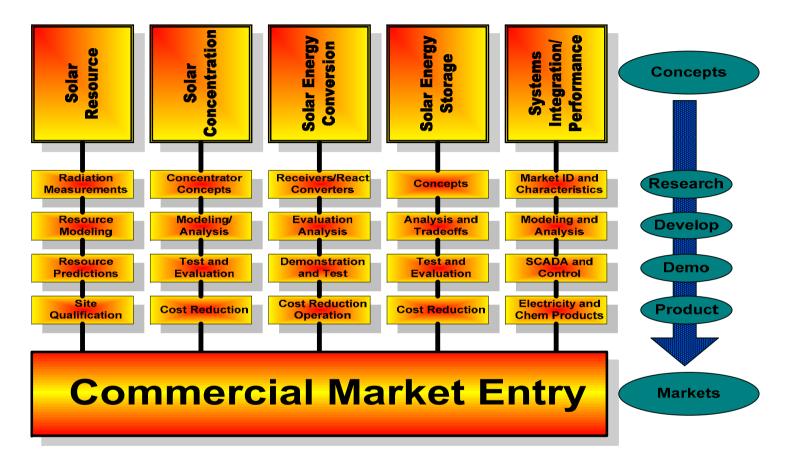
TASK III

TASK V
Solar Resource
Knowledge Management
OA: Dr. David Renne
NREL, USA

TASK II

Solar Chemistry Research
OA: Dr. Anton Meier
PSI, Switzerland

TASK VI


Solar Energy & Water
Processes and Applications
OA: Dr. Julian Blanco
PSA, Spain

SolarPACES

SolarPACES Activity Matrix

We are working to determine how SolarPACES can best support the CSP industry, utilities, financial institutions, regulators, and governments in the emerging CSP marketplace.

Issues Facing SolarPACES

- Determining how best to support industry as they move quickly to deploy systems
- Defining and supporting working collaborations with industry and the R&D groups in various countries.
- Respecting and protecting Intellectual Property.
- Redefining collaboration among R&D working groups within SolarPACES.
- Addressing the shortage of engineers to staff the CSP industry and the R&D communities in the various countries.

Solar PACES

SolarPACES

CSP Test Facilities Worldwide(SolarPACES members)

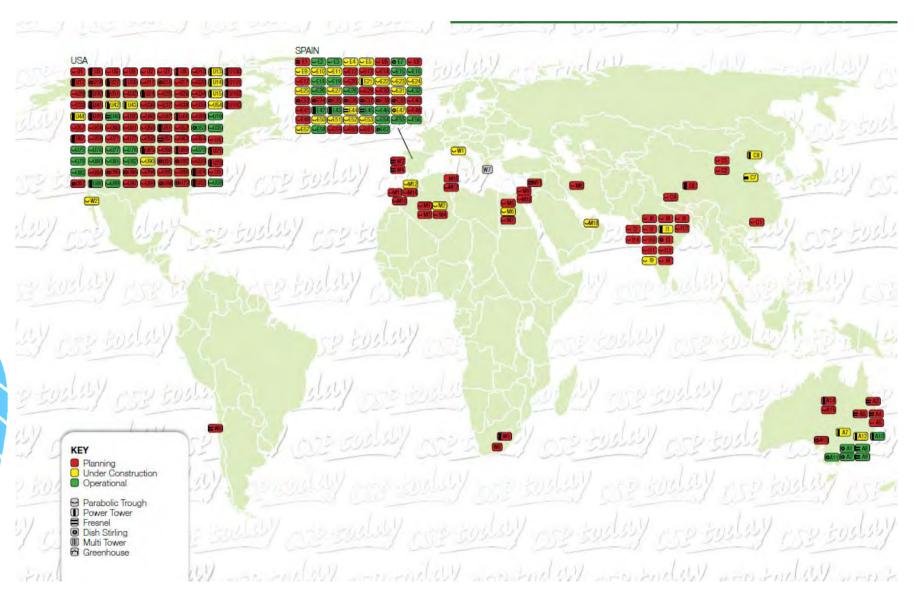
DLR (D)

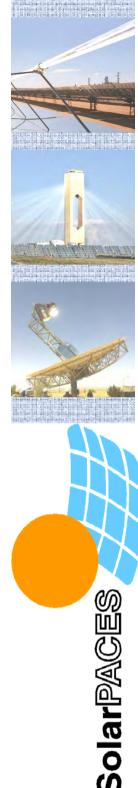
PSI (CH)

Sandia, NREL (US)

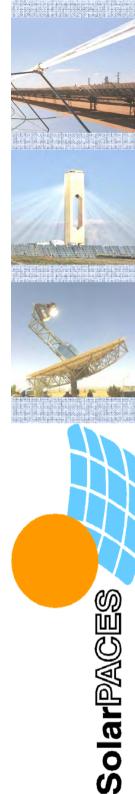
WIS (IL)

KIER (KOR)



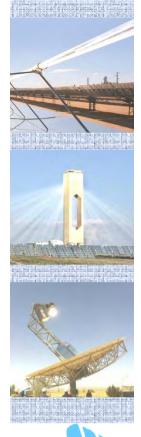

PSA (E)

CSP development Worldwide


Worldwide Operating Systems

YEAR	COMPANY	PLANT NAME	UTILITY/LOCATION		MW
1985	Luz	Solar Energy Generating Systems (SEGS) I	SCE Daggett, CA	Trough	14
1986	Luz	Solar Energy Generating Systems (SEGS) II	SCE Daggett, CA	Trough	30
1987	Luz	Solar Energy Generating Systems (SEGS) III	SCE Kramer Junction, CA	Trough	30
1987	Luz	Solar Energy Generating Systems (SEGS) IV	SCE Kramer Junction, CA	Trough	30
1988	Luz	Solar Energy Generating Systems (SEGS) V	SCE Kramer Junction, CA	Trough	30
1988	Luz	Solar Energy Generating Systems (SEGS) VI	SCE Kramer Junction, CA	Trough	30
1989	Luz	Solar Energy Generating Systems (SEGS) VII	SCE Kramer Junction, CA	Trough	30
1990	Luz	Solar Energy Generating Systems (SEGS) VIII	SCE Harper Lakes, CA	Trough	80
1990	Luz	Solar Energy Generating Systems (SEGS) IX	SCE Harper Lakes, CA	Trough	80
2005	Solargenix	Saguaro Solar Power Plant	APS Red Rock, AZ	Trough	1
2007	Acciona	Nevada Solar One	NV Energy, Boulder City Nv	Trough	64
2008	ACS Cobra	Andasol 1	Granada, SP	Trough	50
2009	ACS Cobra	Andasol 2	Granada, SP	Trough	50
2009	Acciona	Alarado 1	Badajoz, SP	Trough	50
2009	Sopogy	Holaniku	HELCO at Keahoe Point Kona, Hawaii	Trough	2
2009	Iberdrola	Puertollano	Puertollano, Ciudad Real, SP	Trough	50
2010	Abengoa	Solnova 1	Sanlucar de Mayor, SP	Trough	50
			TOTAL INSTALLED MW		671
YEAR	COMPANY	PLANT NAME	UTILITY/LOCATION		MW
2007	Abengoa	PS 10	Sanlucar de Mayor, Sp	Tower	11
2008	Brightsource	SEDC	Negev, Israel	Tower	5 th
2009	Abengoa	PS 20	Sanlucar de Mayor , Sp	Tower	20
2009	eSolar	Sierra SunTower	SCE Antelope Valley, CA	Tower	5
			TOTAL INSTALLED MW		39
YEAR	COMPANY	PLANT NAME	UTILITY/LOCATION		MW
2010	Stirling ES	Maricopa Solar	Phoenix, AZ	Dish	1.5
			TOTAL INSTALLED MW		1.5

~ 1 GW of trough systems in operation.


More than 5 GW of projects under signed PPA worldwide.

Additional Back Up Slides

TASK I PLAN: CSP SYSTEMS

Support deployment of CSP systems Cooperate with industry, utilities, gov. agencies to

- Monitor the progress of commercial CSP projects
- Define the generic characteristics of CSP grid integration
- Develop methodologies for "Green Label" certification, etc.
- Exchange experience and lessons learned
- Monitor System Performance
- Develop Guidelines for Independent Performance Certification
- Build Manufacturing and Operational Capacity
- Perform outreach and disseminate information

TASK II PLAN: SOLAR CHEMISTRY

Demonstrations at industrial scale the production of fuels and chemicals.

- Identify the most promising thermochemical cycles for hydrogen production and down-select
- Develop lower cost receiver/tc reactor technology
- Test a 100 kW-scale demo for the solar reduction of ZnO
- Demo 400 kW synthesis gas production from solar reforming
- Develop a 500 kW solar reactor for the industrial production of hydrogen by steam-gasification
- •Intensify collaboration on hydrogen research with IEA-HIA and IPHE (Task 25)

TASK III: CSP TECHNOLOGIES

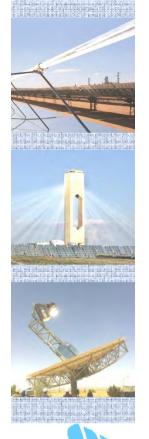
Support deployment through development of needed components and tools.

- Develop Guidelines for component performance measurements
- Prioritize R&D activities with high impact on cost reduction
- Evaluate Reliability of solar components and systems
- Develop Tools and methods for quality assurance of components and systems
- Compare and evaluate alternative storage concepts
- Perform Power plant optimization studies for arid regions

Task V Plan: Solar Resource Mgmt.

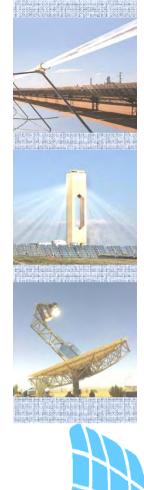
Facilitate the application of solar energy techniques by providing better information on solar resources Worldwide.

- Standardize solar resource products to insure worldwide comparability and acceptance
- Develop a common structure for archiving, processing and accessing solar resource information.
- Improve techniques for solar resource characterization
- Develop methods to provide solar radiation forecasts

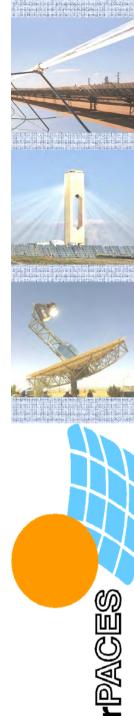


Global Market Initiative

Facilitate project development


- Identify and promote needed policies and regulations that would facilitate the building of CSP plants in GMI countries with emphasis on countries in Region I and Region II.
- Identify and promote supportive financing mechanisms, i.e., investment and production tax credits, and bankable Clean Development Mechanisms and Joint Implementation Actions.
- Provide a forum for exchange of lessons learned among CSP project developers and key stakeholders.

Election of New SolarPACES Chairman


- We ask for candidates to present themselves and their program in the September meeting in Granada
- Election takes place directly after in the meeting

Do we want to change our governance model to involve more members?

Possible models

- Elect chairman and one vice chairmen in parallel (in September)
- Replace chairman by vice chairman after 2 years (or if chairman resigns) and elect new vice chairman.
- Continue so every two years

Chairman candidate should have targets

- New members
- Activities of secretariat
- Cooperation with IEA
- Cooperation with other parties
- Management of Intiatives of strategic plan