Austria – the industry perspective

Robert Höller OMV Power International GmbH

80th ExCo Meeting SolarPACES – Host Country Day Vienna, April 7th 2011

OMV has positioned itself as an integrated market leader in Central and South-eastern Europe

E&P: Solid player in second tier

- Oil & gas production is running at a total of about 317,000 boe/d, proved reserves (P1) approximately 1.2 bn boe
- International E&P portfolio spread across 16 countries comprising six core regions
- Focus on OECD and areas from which OMV markets can be supplied

R&M: Clear market leader

- 20% market share in 13 CEE and SEE markets
- Five refineries with 25.8 mn t/y capacity and a network of 2,319 filling stations
- 95,75% stake in leading Turkish marketing company Petrol Ofisi
- Integrated petrochemical business and 36% stake in Borealis

G&P: Turntable in supply and logistics

- Shipping of some 75 bcm per year of natural gas to Western Europe
- Operation of storage facilities with a capacity of 2.4 bcm
- Gas sales of 13 bcm in CEE, SEE and Turkey
- Long-term Russian and Norwegian supply contracts and access to equity gas

Exploration & Production

Proved reserves as of December 31, 2009 in mn boe

CEE	945
thereof Romania	832
Northwestern Europe	20
North Africa	112
Middle East	38
Russia/Caspian	31
Australia/New Zealand	40
TOTAL	1,188

Production in 2009, in boe/d

CEE	221,000
thereof Romania	181,000
Northwestern Europe	6,000
North Africa	37,000
Middle East	21,000
Russia/Caspian	6,000
Australia/New Zealand	25,000
TOTAL	317,000

OMV's six core regions

OMV Power: From gas to power along the OMV gas supply route

Strategic rationale

- Gas-fired power generation drives the gas demand
- Strong position of OMV in gas business (supply, trading, storages, pipelines)

Strategic thrust

Additional value creation through expanding the gas value chain to electrical power

Power strategy

Build up an asset portfolio with gas-fired power plants and renewable energy

HR (Heat Recovery) = Wärmerückgewinnung

OMV Power focus on 3 different markets

Romania

- Equity gas supply
- Flexible capacity needed
- Huge replacement needs
- Attractive hydro and wind potentials

Turkey

- Large market
- Lack of capacity
- Sustainable gas supply
- Fast growing market (7% p.a.)
- Attractive hydro, wind and solar potentials (40 GW)

Germany/Austria

- Large and liquid market
- Huge replacement and flexibility needs
- Nuclear phase-out

Renewable power plants require flexible CCPPs

Gas-fired CCGT

- + Flexibility "on demand"
- + Additional outlet for gas sales (secure demand)
- + Low investment costs per capacity
- Ability to operate on balancing market (incl. intra-day market)
- + Hedging of decreasing gas prices
- × High variable costs
- Exposure to spark spread and CO2 price, risk of being price-setting plants in merit order
- Reduced competitiveness in base load on forward market

Renewable power

- + Low/zero variable costs
- + Low carbon footprint reducing Group's carbon intensity, no exposure to carbon price
- Growing market potential due to changing energy map
- + Favourable regulatory setting
- × High investment costs per capacity
- Inflexible, to certain extent uncontrollable power generation
- Economics influenced by geographic factors ("geographic monopoly")

Synergies

- + Ability to operate anytime on all different markets and optimise sales portfolio (base, peak, intra-day)
- + Ability to meet changing demand requirements
- + Stable cash flows, sustainable profitability / growth options
- + Risk diversification

Renewable Power - Focus on wind, while also supporting hydro and solar, and new technologies

Overview

- ▶ Business Unit Power Renewable Projects bundles renewable power activities of OMV Group
- ▶ Focus on renewable power from feedstock free of charge and without any alternative usage
 - Focus on capacity growth in commercially mature renewable technologies, i.e. hydro and wind
 - Development of solar power as business opportunity and supporting new technologies

Business Area

Wind

Hydro

Solar

Focus and Strategy

- Key technology for capacity growth
- ► Focus markets: Romania, Turkey
- Evaluation of hydro power projects with lowest possible environmental and socio-economic impact
- ► Evaluation of Concentrated Solar Thermal Power Plants (CSP)
- ► Focus areas: Turkey, MENA

Monitoring of new opportunities/ technology trends

- ▶ Geothermal power (in cooperation with OMV E&P); Biomass to heat and power opportunistically
- ► Photovoltaics, Electricity storage systems
- ► Electric drive concepts: Plug-in hybrid/electric vehicles

Romania: CCPP in Brazi

Capacity

▶ 860 MW net

Generation

▶ 5 TWh p.a.

Type

Combined cycle gas-fired power plant (CCPP)

Status

- First brick ceremony at Brazi took place on 03 June 2009
- Plant and electrical overhead line construction ongoing
- Gas pipeline (30 kms) construction ongoing

2009: Start of construction 2011: Start of commercial operation

Project CCPP Samsun Fact Sheet

Capacity

- ▶ 870 MW net
- 2 x 435 MW Gas/Steam Turbines (Single Shaft power plant)

Type

Gas fired Combined Cycle Power Plant (CCPP)

Status

Construction start: 2010

Commercial Operation: 2012

2010-06: Construction Start 2012: Commercial Operation

Germany: CCPP Haiming

Target:

2012: Start of construction 2014: Start of commercial operation

Capacity

850 MW net

Generation

▶ 5 TWh p.a.

Type

Combined cycle gas-fired power plant (CCPP)

Status

- Land secured
- Plant construction permit expected 2010
- Overhead line permitting process started (critical path)
- Bürgerbegehren: 61% voted pro power plant project
- EMAS certified

Austria: Heat Recovery Weitendorf

Capacity

▶ 16 MW

Generation

75 GWh p.a.(~ 28,000 households)

Type

Heat recovery system with boiler and steam turbine

Status

- All permits granted
- Construction started
- Electrical connection line construction started

2009: Start of construction ———— 2011: Start of commercial operation

Wind Romania – first renewable asset

Capacity

▶ 45 MW

Generation

113 GWh p.a.(~ 50,000 households)

Type

▶ 15 Vestas turbines, 3 MW each

Status

- All contracts signed
- All permits and land secured
- Site mobilisation June 2010

2010: Start of construction ———— 2011: Start of commercial operation

Project development CSP Turkey

Theoretical Solar Potential Turkey

~100,000 km² within macro region with usable DNI above 1800 kWh/m²

Suitable areas

40,000 km² of flat feasible areas with DNI above 1800 kWh/m²

Project Options

- 17 sites were selected for a long list (1900-2100 kWh/m^{2*}a)
- 3 sites out of that were shortlisted with a total capacity of several 100 MW
- Further development at 2 sites with ground based solar measurements

Location: South Turkey

Capacity: 50 MW net (minimum)

Type: Concentrated Solar Power (CSP) plant

Start of development: 2008

Status: Pre-feasibility study for CSP plant opportunities in Turkey showed numerous

pilot-/demonstration plant locations

Feasibility study and solar measurements at 2 sites ongoing (2009 – 2011)

Site Selection Process

⊢ - Pre-Feasibility Study

Priority site(s)

CRITERIA:

- Excellent solar radiation (>2000 kWh/m2/a)
- Low humidity, no clouds, no dust
- Flat terrain (slope < 3%, 1-2 km² for 50 MW)
- Water for cooling and cleaning of the collectors
- Access to gas for balancing of the plant
- Access to power grid
- Land use agreement
- Civil infrastructure

Priority Region

Decision on priority site

- Solar measurements
- Negotiations with land owners
- Permissions obtained

Site 1 Site 1 Detailed site evaluation Current use Ownership Irrigation Topography Accessibility Water Gas Grid Solar resource verification

Legal Framework for CSP

Renewable Energy Law

- Introduced in 2005, valid until 2010
- Applicable price ceiling of 55 €/MWh
- Possibility of switching between fixed price and market prices
- Reduced or no licensing fees
- Priority grid access
- Privileged access and use of treasury land

Draft of new RES Law (2008-2010)

- For the first time special feed-in tariff for Solar Energy
- The FIT for CSP 200 €/MWh with the option for 260 €/MWh in case that 100% of the EM equipment will be sourced in Turkey

New amendment to RES law

- Ratified in December 2010
- Feed-in-tariff for CSP: 13.3 ct\$/kWh
- Additional incentives for domestically produced components: max. 4.9 ct\$/kWh for PT
- Max. FiT for CSP: 14 ct€/kWh
- Hybrid production facilities are possible
- Cap of 600 MW solar energy until 12/2013

It's about connecting people, cultures and continents.

NA

North Africa

Dii 2050 Vision

- ▶ 15% of the European power demand by 2050
- ▶ 700 TWh/a transferred from MENA to various centres of demand in Europe; Total production in MENA: 4000 TWh/a
- Installations in MENA: 400 GW CSP, 130 GW wind energy, 120 GW PV, 40 GW geothermal
- ▶ 350 bn EUR until 2050 for power plant infrastructure, 50 bn EUR until 2050 for High-Voltage Direct-Current (HVDC) transmission lines

Background and Concept

- Desertec concept (started 2003) focuses on solar power, but also on wind and other renewables
- Dii brings the technology to the best resources and not to the best subsidy schemes to produce sustainable electricity for EU and MENA
- ► EU has to import Renewable Energy to fulfill 80% RE target 2050*
- Incentives (e.g. feed-in tariffs) for Renewable Power projects in MENA will be possible by applying Article 9 of the EU Renewable Energy Directive
- ➤ EU Member States can act as "Off-taker" of Renewable Power from third countries to close the gap of their Renewable Energy targets (NREAP) buy purchasing of Renewable Power and by a statistical ("booked") transfer of the electricity under a cooperative flexible mechanism (no physical transfer necessary according to Article 9)

Source: [

Dii: 51 Partners from over 12 countries

19 Shareholders

Deutsche Bank

≇Terna

32 Associated Partners

Cooperating with institutions, associations and other initiatives:

MSP, UfM, IRENA, RECREE, ENTSO-E, ESTELA, OME, MEDRING, TRANSGREEN, etc.

Making the vision a reality – planning phase until 2012

Five work areas derived from Dii's mission and objectives

Dii work areas

'What has to be done to cover 15% of the European and substantially more of the MENA demand with power from sun and wind in 2050?'

Regulation

Creating a sustainable regulatory and legislative framework

Generation

Converting RE from sun / wind in the deserts

Transmission

Enabling transport from source to local/remote markets

Markets

Bridging the gap between expected revenues and costs

Roll-out Plan

Economic assessment and implementation roadmap

Create a favorable regulat. / legislative environment

Propose concrete reference projects

Develop a roll-out plan until 2050

Perform addtl.

Source: Dii

Dii and OMV

- OMV joined Desertec Industrial Initiative
 (Dii) as an Associate Partner in March 2010
- First Austrian company to join Dii

Objectives:

- Active contribution to Dii working groups during feasibility phase
- Obtain and evaluate results from feasibility studies
- Bring in OMV experience of realizing large international energy projects
- OMV has regional footprint in MENA region for many years and can leverage contacts
- Extend renewable portfolio in MENA
- Bring in experience in developing wind and solar projects
- Build up know how (technology, organisation, processes)
- Fortify our strong partnership with the region(s)

Sketch of a possible infrastructure ("Super Grid") for a sustainable supply of power to Europe, the Middle East and North Africa (EU-MENA)

Source: Dii

OMV Power – Pioneers, Professionals, Partners

