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Carbon-fibre reinforced  
polymer composites (CFRP) 

High specific strength, but low tribological resistance  
(abrasive / adhesive wear) 
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Additive Manufacturing / 3D-Druck 
Selective Laser Sintering (SLS) of PA12 
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Additive Manufacturing / 3D-Druck 
6 
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Polymers and the need for coatings 
8 

advantages 

Polymer materials / plastics 

disadvantages 

• Low specific density 
• Easy manufacturing 

• Low hardness 
• Low mechanical strength 
• Low temperature resistance 

Increasing the scratch (wear) resistance 
 

Functionalization of the surface 
(sensoric, optical, decorative, biocompatible properties) 

Aim of coating 



Defects on CFRP surfaces  
and in coatings on CFRP  

Pores in substrate surface 
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Defects on CFRP surfaces  
and in coatings on CFRP  

Surface roughness – carbon fibres protuding epoxy surface 
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Defects on 3D-printed SLS surfaces 
Waviness – stair stepping 

 

 

 

 

Roughness – weakly sintered powder  
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Demands for coatings 

 Low temperature deposition process – preventing thermal stresses 
 Tough coatings with high adhesion and cohesion 
 Reduction of film growth stresses 
 Load supporting layers to prevent large substrate deflection under loads 
 Control of plasma impact on polymer surfaces (degradation, cross-linking) 
 Coating materials with low impact of contamination due to polymer 

degasing in vacuum 
 Low friction and wear against various counterparts (dry and lubricated) 
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Key factors  
in polymer 

coating: 

• Bridging the very different properties (thermal, 
mechanical) between metal / ceramic coatings 
and polymer / composite 

• Tolerance to surface defects 

Further demands: 



Demands on coatings - influences 
13 

contaminations 
interface  

polarization 
film 

stresses 
film 

thickness 
atmosphere / 

medium 

reactive 
interface 

layer 

interface 
chemistry 

interface 
topography/ 
morphology 

elastic / plastic 
properties of  

film & substrate 

Adhesion strength: Cohesion strength:  
 
film density & 
porosity (deposition 
technique, energy in 
plasma / diffusion 
activation on surface) 
 
toughness of film 
material 
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Deformation of hard coatings –  
brittle single layer TiN 

Cross-section view: 

Test setup: 
 

Indentation  
(max. 0.5 N) by  

cone-shaped  
diamond indenter  
(20 µm tip radius) 

Top view of indent: 

FE simulation of 
von-Mises 
stresses: 

Shear  
crack 

Penetration of tensile 
cracks in brittle TiN 

dependent on stress 
distribution. Cracks run 

along column 
boundaries 



Biomimetics –  
A general introduction 

Biomimetics 
 

Study and simulation of biological systems with 
desired properties 

 

Transformation of the underlying principles into 
man-made technology 
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Mimicking nacre deformation by 
soft-hard multilayer coatings 17 
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Microstructure of shells 
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Structure of nacre 
 

 

 

 

 

 

 

 

 
 

95% aragonite (CaCO3) tablets with 
5% soft organic phase (proteins and 
polysaccharides) 

3D wall or columnar structure 
dependent on mollusc shell species 

http://www.google.at/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0CAcQjRw&url=http://www.yourarticlelibrary.com/biology/pearl-culture-in-india-types-of-pearl-oysters-and-formation-of-pearl/24118/&ei=vZdsVZjyFqe3ygPgjoOADg&bvm=bv.94455598,d.bGQ&psig=AFQjCNE-TFapXpT81_195k0K3UWhDYPH9g&ust=1433266466057434


Mimicking nacre deformation by 
soft-hard multilayer coatings 

Deformation of nacre 
 

 

 

 

 

 

 

 

 

 

Minimal impact by nanostructure of 
CaCO3 tablets 

Huge effect of organic phase – 
maintains the cohesion of tablets over 
large separation distances (uncoiling of 
modules) 

Nanoasperities on tablets provide 
frictional resistance to sliding 

„Dovetail“-like waviness of tablets (~ 
half to one tablet length with amplitude 
~¼ thickness) act as interlocking-based 
hardening mechanism during sliding 

Effect: Extremly high toughness 
combined with high hardness 
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Biomimetic archetypes 
Haliotis discus hannoi 20 

Fracture structure Crack propagation 

Nacreous layer 
Nacreous layer 
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Biomimetic archetypes 
Mytilus edulis  
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Mimicking nacre deformation by 
soft-hard multilayer coatings 

Deformation of nacre 

Ductile behavior of hydrated 
nacre by load transmission by 
tensile stressing of tablets and 
shear stressing of interfaces 
(protein layer) 

 
Failure: large shearing at 

interfaces (pull-out of tablets) 

H.S. Gupta, J. Seto, W. Wagermaier, Proc. Natl Acad. Sci. USA 103 (2006) 17741. 
M.F. Doerner, W.D. Nix, J. Mater. Res. 1 (1986) 601. 
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Deformation & fracture of hard coatings  
– tough multilayer Ti-TiN with defect-tolerance 

Cross-section view: Top view of indent: 

FE simulation of 
von-Mises 
stresses: 

Shearing in 
metal Ti layers 
(45° to normal 
force) 
 

Brittle fracture 
in TiN 

Stresses 
lower at 
same 
loading 

Shear step 

Ti 

TiN 

Ti 

~67.5° 

No total 
coating failure 
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Physical vapour deposition (PVD) 

Our approach –  
Methods of plasma-based coating deposition 

Chemical vapour deposition (CVD) 

25 

COATING 

MODIFICATION Substrate 

Coating 

Coating source 
(target) 

1: Vaporization and ionization of  
    target material 

2: Vapour transport through  
    vacuum to substrate and plasma     
    induced reactions 

3: Nucleation and film growth on 
    substrate surface 

Vacuum chamber 

Substrate 

Coating 

Coating source 
(precursor) 

1: Plasma induced chemical reactions 
    in precursor (polymerization,  
    oxidation, particle formation, etc.)  

2: Nucleation and film growth on 
    substrate surface 

 



Low-vacuum 
deposition processes 

26 

Capacitive coupled plasma 
Frequency: 40 kHz 
Power: up to 3000 W 

Usable chamber volume:  
planetary diameter 300 mm, height 
630 mm 

Gases: Ar, O2, N2, C2H2, SF6, 
HMDSO, HMDS, CF3H, etc. 

Gas pressure: 5 x 10-2 to 2.5 mbar 
 

Plasmapolymerization (PP) 
Hybrid (PP + Atomic Layer Deposition) 

Plasma-assisted chemical  
vapour deposition 



27 
High-vacuum deposition processes 

Pulsed Laser Deposition (PLD) 
Magnetron sputtering (MS) 

Anode Layer Ion Source treatment  
and assisted deposition (ALS) 

PLD: KrF & Nd:YAG multi-beam evaporator 

MS: DC, DC-pulsed, RF on 1-4 sputter 
magnetrons 

ALS: Veeco ALS 340 

Usable chamber 
volume:  
planetary diameter 560 
mm, 450 mm 

Gas pressure: 10-4 to 
10-2 mbar 
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Coating architectures / concepts 29 

29 

(Carbon-fibre reinforced) polymer substrate 

Tribological functional intermediate layer coating 

Load support layer 
(Cr-CrNx  multilayer coating) 

Ultra-low friction top layer 



Low-vacuum deposition processes 
Coatings‘ microstructure & micromechanics 30 

H
, E

 [G
Pa

] 

Coating 
Thickness of a 

bilayer 
Total coating 

thickness 
1 bilayer 3950 nm (~4 µm) 3900 nm 
2 bilayer 1963 nm (~2 µm) 3926 nm 
4 bilayer 1013 nm (~1 µm) 4052 nm 
8 bilayer 521 nm (~0.5 µm) 4168 nm 
16 bilayer 248 nm (~0.25 µm) 3968 nm 1 bilayer 



High-vacuum deposition processes 
Cr-CrNx load support base layer 

(Carbon-fibre 
reinforced) 

polymer 
substrate 

Load support 
layer 

(Cr-CrNx  
multilayer 
coating) 

Tribological 
functional 

intermediate 
layer coating 



Tribological functional intermediate layer 
Nanocomposite a-C:H:Cr 

Cr-Cr2N 
Cr-Cr2N 

CrCx 
dominance 

CrCx with small 
amount of a-C:H 

matrix 

CrCx grains in  
a-C:H matrix 

H/E 0,058 0,065 0,056 0,052 0,064 0,082 0,085 

a-C:H 

a-C:H 

Magnetron sputtering 
from Cr targets in 
C2H2-Ar atmosphere  

Nanocomposite 
formation: 

Chemical binding (Raman): 

Micromechanical properties: 

Increase of C2H2 flow 



Fracture analysis:  
Spherical indentation R100 µm diamond 

35 sccm 
700mN 

Toughness calculated from indentation 
curves and stress-strain curves: 

Tribological functional intermediate layer 
Nanocomposite a-C:H:Cr 

10 sccm 5 sccm 20 sccm 25 sccm 30 sccm 35 sccm 

14N 30N 

Scratch test: 
(100 µm HRC tip) @ 
maximum load of 
instrument (30 N) 

@ first visible crack  

1 µm on 4 µm Cr-CrN load support coating 



Tribological functional intermediate layer 
Nanocomposite a-C:H:Cr 

a-C:H 

10 sccm 

5 sccm 

15 sccm 
20 sccm 

25 sccm 

30 sccm 

35 sccm 

1 µm on 4 µm Cr-CrN load support coating 

Ball-on-disc test: 
Al2O3 ball, 6mm, FN=1N, 20.000 cycles, 0,06m/s speed, Hertzian pressure σH=0,36 GPa 

Low friction behaviour achieveable only by a-C:H,  
but a-C:H:Cr provides much higher H/E ratio and toughness 



Roughness influence 35 

Scratch resistance on CFRP 
R100 µm HRC diamond 

Lc1 
(COhesive film failure) 

Lc1 
(ADhesive film-substrate 

delamination failure) 
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Roughness influence 36 

Reciprocating sliding 
smooth rough 

1000 cycles, 2 N 

100 cycles, 5 N 

D6 mm Al2O3 ball 



Roughness influence 37 

Reciprocating sliding 

smooth rough 

D6 mm 100Cr6 steel ball 

1000 cycles, 2 N 



  
       

   
     
      

             

  
    

2000 cycles 10000 cycles 
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0.41 

152 

22 

0.13 

Wear index 
[10-6 mm³/Nm] 
 90% C 93% C 96% C 

90% C 

93% C 

96% C 

Pin-on-disc testing 
Al2O3, 1 N 

Top layers – Tribological properties of  
a-C:H(:MoS2) nanocomposites 

2000 cycles 
10000 cycles 
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Thanks for your attention! 
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