Projektpräsentation
Projektpräsentation
Programmlinie
"Fabrik der Zukunft – 1. Ausschreibung"

Untersuchung des Stirlingprozesses für eine umweltverträgliche Kälteerzeugung - Systemanalyse

R. Stiglbrunner, JOANNEUM RESEARCH

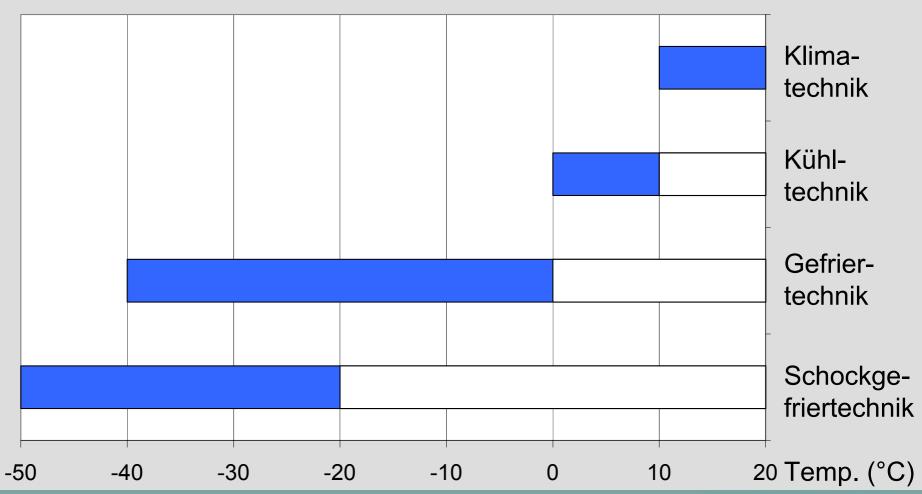
Graz, 15. Oktober 2003

Ziele

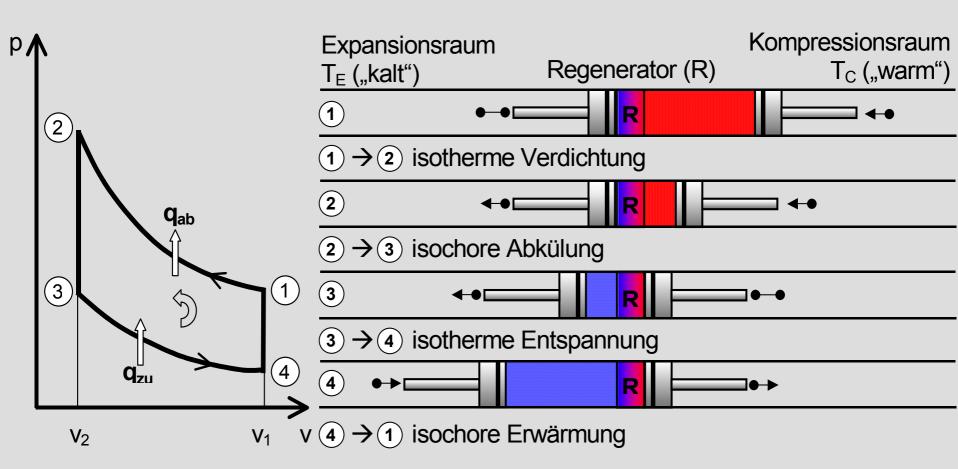
- Aktuelle Bewertung der Stirling-Kältetechnik im umgebungsnahen Temperaturbereich
- Darstellung bestehender technischer und wirtschaftlicher Probleme
- Betrachtungen zur Umweltbeeinträchtigung und zur Nachhaltigkeit
- Herstellung von Industriekontakten
- Abgabe von Empfehlungen zur weiteren Vorgangsweise

Inhalte

- Erhebung des Standes des Wissens und der Technik von Stirling-Kältemaschinen im umgebungsnahen Temperaturbereich
- Auswahl erfolgversprechender Stirlingsysteme
- Vergleich der Stirling-Kältetechnik mit der konventionellen Kältetechnik
- Ausarbeitung von Empfehlungen
- Dokumentation der Ergebnisse


Umweltaspekte die Kältetechnik

- Umweltbeeinträchtigung durch Kältemittel:
 - Ozonabbau in der Stratosphäre
 - Beitrag zum anthropogenen Treibhauseffekt
- Umweltbeeinträchtigung durch Bereitstellung der Antriebsenergie:
 - Beitrag zum anthropogenen Treibhauseffekt
 - "allgemeine Umweltprobleme" der Energiebereitstellung


Umgebungsnahe Kälteanwendungen

Idealer Stirling-Kälteprozess (p-v Diagramm und Kolbenbewegungen)

Stand des Wissens – Stirling-Kältetechnik

- Kryobereich:
 Stand der Technik mit den Haupeinsatzbereichen
 - Gasverflüssigung
 - Kühlung von Sensoren und Elektronikbauteilen
- Umgebungsnaher Temperaturbereich:
 - Versuche im Laborstadium

Systemauswahl - Stirling-Maschine

- α Typ:
 Jeder der beiden Kolben in einem eigenen Zylinder,
 Regenerator zwischen den Zylindern.
- β Typ:
 Beide Kolben in einem Zylinder, Verdrängerkolben kann Regenerator enthalten.
- γ Typ:
 Kolben in verschiedenen Zylindern (wie α Typ), aber
 Regenerator nicht zwischen den Zylindern.
- Geeignet für Kältemaschinen im umgebungsnahen Temperaturbereich:
 β – oder α – Typ

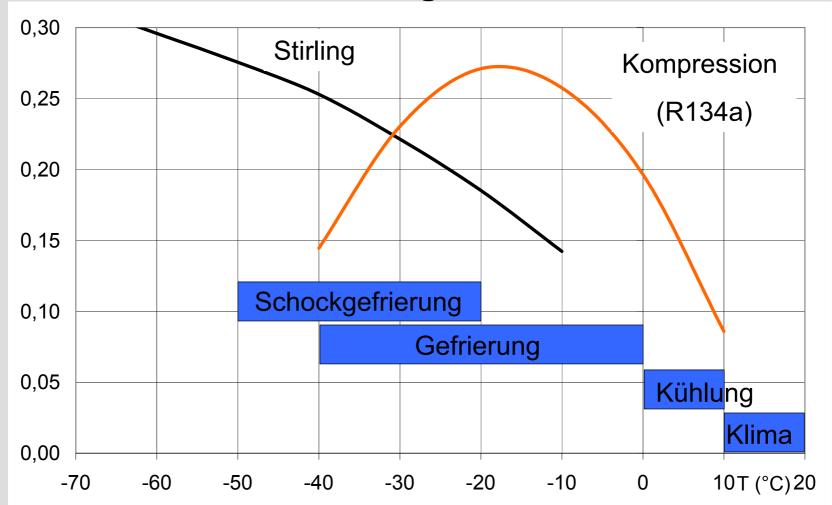
Systemvergleich

- Vergleich der Stirling-Kältetechnik mit der konventionellen Kältetechnik (Kaltdampf-Kompressions-Kältetechnik) für die vier Bereiche der umgebungsnahen Kälteanwendungen hinsichtlich
 - Umwelt
 - Technik
 - Wirtschaftlichkeit

- Ozonabbau in der Stratosphäre ODP (Ozon Depletion Potential): Verursacht durch bestimmte Kältemittel in der Stratosphäre
- Verstärkung des Treibhauseffektes TEWI (Total Equivalent Warming Impact)
 - direkten Anteil:
 Verursacht durch bestimmte Kältemittel
 - indirekten Anteil:
 Verursacht durch die Bereitstellung der Antriebsenergie

Systemvergleich - Technik

Gütegrad:


Verhältnis von tatsächliche Leistungszahl einer Kältemaschine zur Carnot-Leistungszahl

("Maß für die Nutzung der eingesetzten Antriebsenergie" d.h. je höher der Gütegrad, desto "besser" ist die Kältemaschine)

Gütegrad

Systemvergleich - Wirtschaftlichkeit

- Anlagekosten:
 Für Stirling-Kältemaschinen derzeit nicht abschätzbar,
 dürften aber bei Serienreife nicht wesentlich über jenen
 von Kompressions-Kältemaschinen liegen.
- Betriebskosten:
 - Kosten der Antriebsenergie: erforderliche Antriebsenergie abhängig vom Gütegrad
 - Sonstige Kosten (Wartung, Ersatz von Kälte- bzw. Arbeitsmittel, etc.):
 keine wesentlichen Unterschiede zu erwarten

Ergebnisse des Systemvergleichs Stirling-Kältetechnik – konventionelle Kältetechnik

Anwendung	Umwelt	Technik	Wirtschaftlichkeit
Klimatechnik	+		
Kühltechnik	+	-	-
Gefriertechnik	++	++	+
Schockgefrier-			
technik	++	++	+

- ++ weit überlegen
 - + überlegen
- +/- gleichwertig

- unterlegen
- -- weit unterlegen

Fallbeispiel - Annahmen

Industrielle Kälteanlage:

Technik: 50 kW, 5.000 h / a, -40 °C, 20 a

Stromkosten: 7 €Cent / kWh

CO₂-äquiv. Emissionsfaktor: 0,305 kg CO₂-äquiv. / kWh

Kaltdampf-Kompressions-Kältemaschine:

Kältemittel: R134a

- Füllmenge: 15 kg

- Leckrate: 0,75 kg / a

- Rückgewinnungsfaktor: 0,9

Stirling-Kältemaschine:

α – Typ Stirling-Maschine

Arbeitsmittel: Helium

Fallbeispiel - Ergebnisse

	Energieeinsatz (kWh_el / kWh_Kälte)	Betriebskosten (€ / kWh_Kälte)	ODP (R11 = 1)	TEWI (kg CO ₂ äquiv. / kWh_Kälte)
Stirling	0,97	0,07	0	0,295
Kompression	1,69	0,12	0	0,520
Differenz	-43%	-43%	0%	-43%

Nachhaltigkeit der Stirling-Kältetechnik

- Betrachtungen der Stirling-Kältetechnik in Bezug auf die "Sieben Leitprinzipien Nachhaltiger Technologieentwicklung"
- Der Einsatz der Stirling-Kältetechnik in den geeigneten Anwendungsbereichen (Gefrier- und Schockgefriertechnik bei Temperaturen unter ca. -30 °C) erfüllt alle "Sieben Leitprinzipien Nachhaltiger Technologieentwicklung"

Industriekontakte

- Befragung von 13 Unternehmen mit Standorten in Österreich betreffend
 - Marktattraktivität der Stirling-Kältetechnik
 - Kooperationsinteresse
- Ergebnisse der Befragung:
 - vier Antworten
 - ein Interessent

Zusammenfassung und Empfehlungen

- Zusammenfassung:
 Geeignete Einsatzbereiche der Stirling-Kältetechnik im umgebungsnahen Temperaturbereich sind Gefrier- und Schockgefriertechnik bei Temperaturen unter ca. –30 °C
- Empfehlungen:
 - Untersuchungen des Kältemarktes im Gefrier- und Schockgefrierbereich
 - Erstellung eines Business-Plans zur Entwicklung praktisch einsetzbarer Stirling-Kältemaschinen

