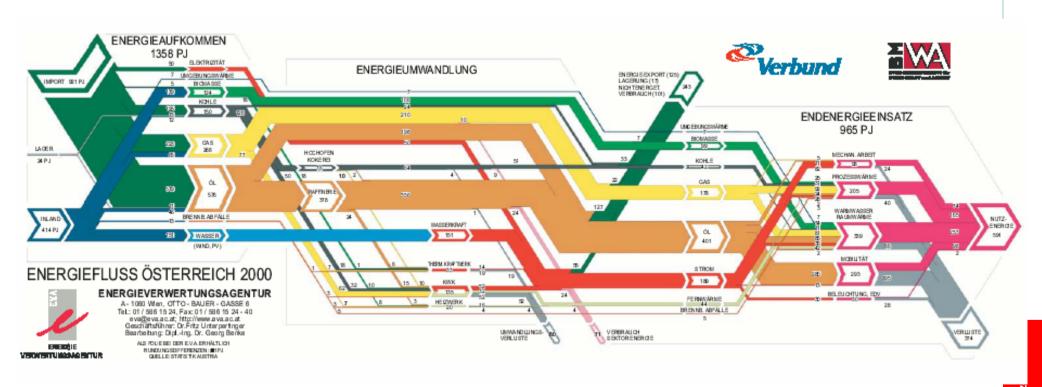
Niedertemperaturprozesse in der Industrie Energiebedarf in Österreich

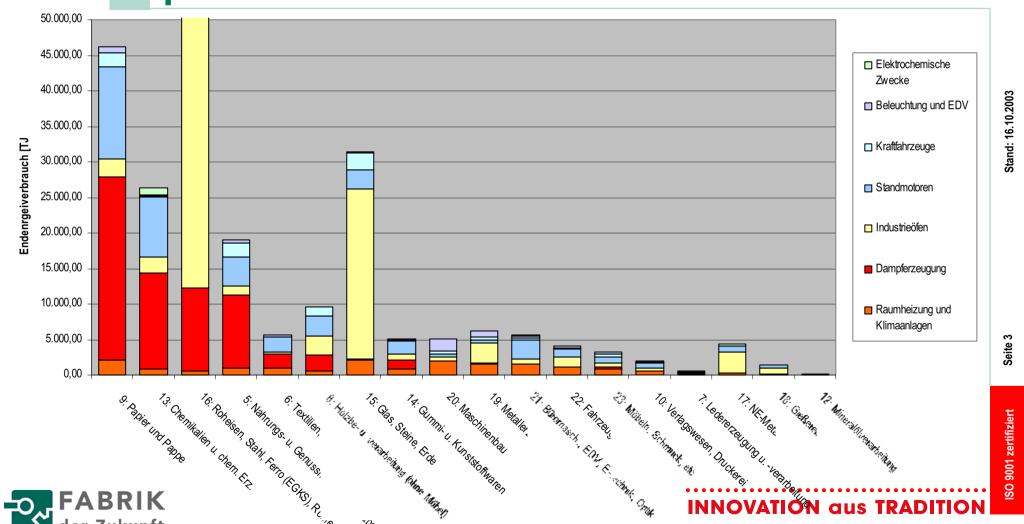
"Technologien und Innovationen für eine nachhaltige Produktion" im Rahmen der Programmlinie "Fabrik der Zukunft"

15. Oktober 2003, Amt der Steiermärkischen Landesregierung/ Graz


Hans Schnitzer, JOANNEUM RESEARCH

Institut für nachhaltige Techniken und Systeme – JOINTS

Elisabethstraße 16 / I, 8010 Graz


http://www.joanneum.at/nts

Energiefluss Österreich 2000 (Grafik der Energieverwertungsagentur)

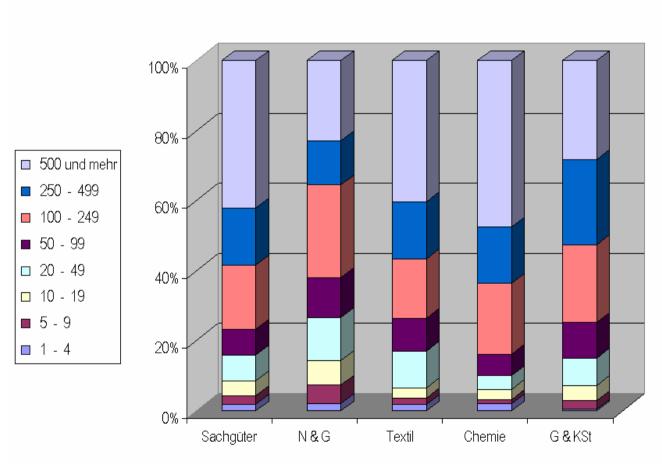
Energetischer Endverbrauch im produzierenden Bereich 1997 (Datenquelle: Statistik Austria)

Auswahl der Wirtschaftsbereiche – Kriterien

- Potential Wärmeenergieverbrauch (Voraussetzung)
- Abwärmepotenzial aus Hochtemperaturprozessen (Ausschließung)
- Geeignete Temperaturniveaus der wichtigsten Prozesse
- "Typische" Niedertemperaturanwendungen (Trocknen, Reinigen, Pasteurisieren, Oberflächenbehandlung, ..)
- Interessensbekundungen und Rückmeldungen aus der Wirtschaft (Nischensparten)
- Betriebsgrößen (Obwohl es sehr viel mehr kleine Unternehmen gibt, liegt ihr Anteil am Produktionswert und am Energieverbrauch einer Branche nur zwischen 5 und 10 %)

Institut für Nachhaltige Techniken und Systeme - JOINTS

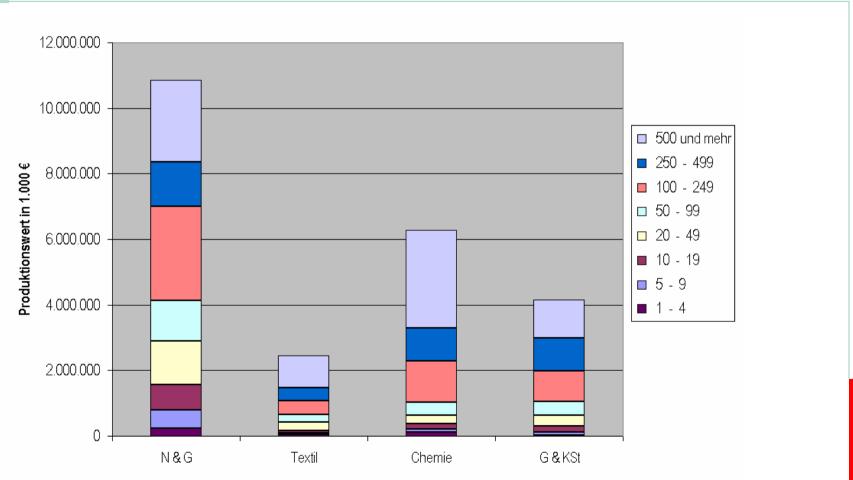
Auswahl der Wirtschaftsbereiche – Ergebnisse nach NACE incl. Kleinunternehmen


(Datenquelle Statistik Austria: Leistungs- und Strukturdaten 2000)

NACE- Abteilung	Bezeichnung Wirtschaftsbereich	Bezeichnung Branche	Unter- nehmen*	Beschäftigte*	Prodwert in Mio €*	Besch./ Unt.	Mio €/Unt.	1.000 €/Besch.
D	Sachgütererzeugung	ı	25.044	628.753	98.500,7	25	3,9	156,7
15	H.v. Nahrungs- u. Ge	4.386	79.374	10.658,5	18	2,4	134,3	
17	H.v. Textilien und Te	787	21.086	2.479,4	27	3,2	117,6	
24	H.v. Chemikalien u. o	369	27.141	6.815,1	74	18,5	251,1	
25	H.v. Gummi- und Kunststoffwaren		559	29.601	3.989,3	53	7,1	134,8
*	* Statistik Austria: Leistungs- und Strukturdaten 2000 / Ergebnisse der Leistungs- und Strukturerhebung							

Struktur der ausgewählten Sektoren nach Betriebsgröße bezogen auf den Produktionswert

(Statistik Austria: Leistungs- und Strukturerhebung 2001)



Stand: 16.10.2003

Struktur der ausgewählten Sektoren nach Betriebsgröße bezogen auf den Produktionswert

(Statistik Austria: Leistungs- und Strukturerhebung 2001)

INNOVATION aus TRADITION

Stand: 16.10.2003

eite 7

Branchenauswahl - Beispiele I

- Milchverarbeitung
 - Berglandmilch / Voitsberg

- Brauereien
 - Obermurtaler
 Brauereigenossenschaft / Murau
 - Brau Union / Graz Puntigam

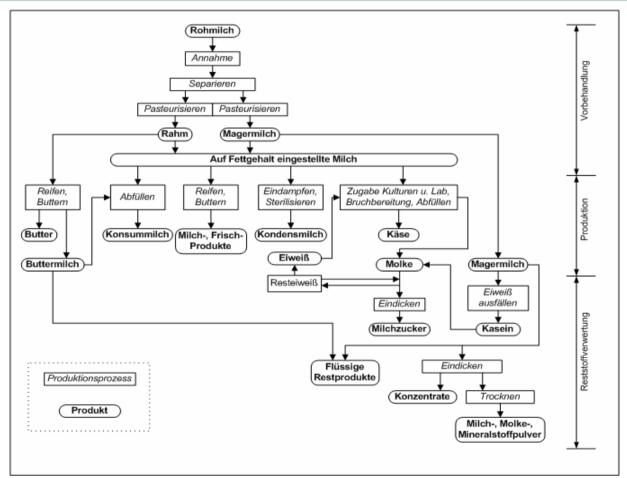
- Bramac / Gaspoltshofen
- S&W / Klagenfurt

INNOVATION aus TRADITION

Branchenauswahl – Beispiele II

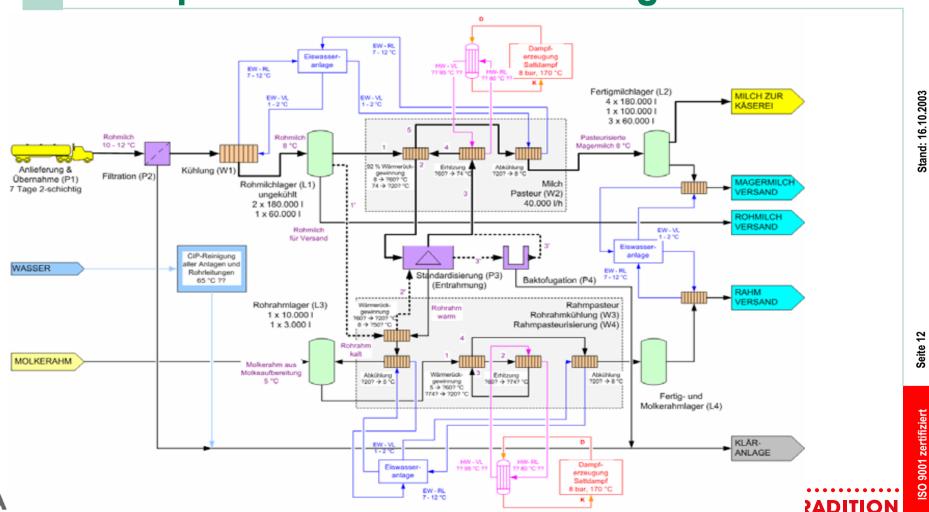
- Platten aus Kunststoff
 - Körner / Wies
- Verarbeitung v. Obst & Gemüse
 - Beerenfrost / Lieboch
 - Zimmermann / Klagenfurt
- Textilherstellung u. –verarbeitung
 - Durmont / Hartberg
 - Eybl International / Krems

durmont.at



Erhebung des Niedertemperaturbedarfs einer Branche am Beispiel Milchverarbeitung

- Produkte, Herstellung
- Prozesse bzw. Produktionslinien nach Produkten (Schemata)
- Prozessmatrix: Anfangs- u. Endtemp., spez. Wärmebedarf, Bezugsbasis
- Energiefluss, Optimierungspotenzial
- Prozesstechnische Hemmnisse
- Wirtschaftliche Rahmenbedingungen
- Auswertung: Jahresbedarf Wärmeenergie nach Prozessen und Temperaturniveaus mit Bedarfsprofil

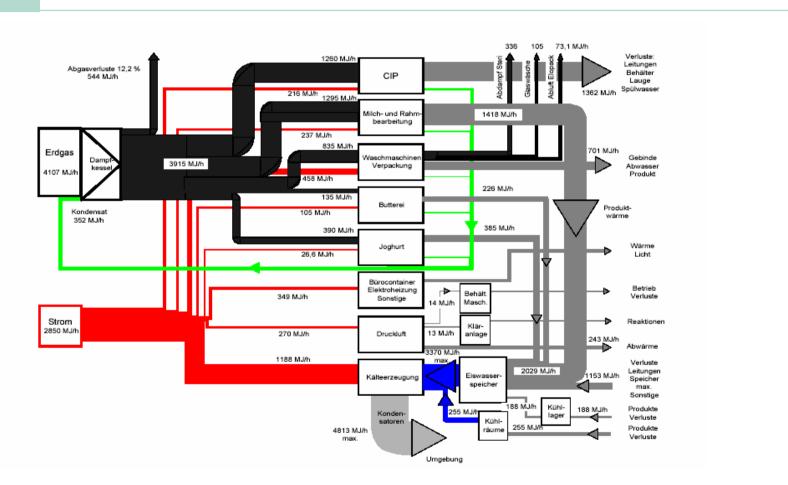

Milchverarbeitung: Produkte, Herstellung

Milchprozess I: Vorbehandlung

Milchprozess II: Käsefertigung

- Chargenbetrieb in so genannten Käsefermentern, meistens werden mehrere parallel betrieben
- in ca. 2 3 h laufen bis zu über 30 verschiedene Prozessschritte hintereinander ab
- dabei variieren Mengen,
 Temperaturen und
 Prozessschritte je nach
 Käsesorte
- danach erfolgt noch die Pressung, das Salzbad und verschiedene Reifeprozesse

Teilprozess		Dauer	Temp.	Wärmebedarf
Befüllen mit Milch	1. Teilmenge		33 °C	Wärme für Milchvorwärmung
Befüllen mit Kulturen	1 bis mehrere			
Befüllen mit Milch	2. Teilmenge		33 °C	Wärme für Milchvorwärmung
Befüllen mit Wasser	optional		40 - 60 °C	Warmwasserbedarf 1
Beheizen	optional	über die ganze Zeit	30 - 45 °C	Wandheizung
Inkubation		30 - 60 min		
Labzeit		20 - 30 min		
Schneideprozesse	bis zu 6	ca. 10 min		unterschiedl. Drehzahlen
Vorkäsen		10 - 20 min		
Molkeabzug 1	1. Teilmenge			Abwärme!!
Schneiden, Aufrühren				
Nachkäsen 1		ca. 60 min		
Waschwasser			35 - 65 °C	Warmwasserbedarf 2
Nachkäsen 2		10 - 30 min		
Molkeabzug 2				Abwärme!!
Schneiden, Aufrühren				
Entleeren	zur Käsepresse			Abwärme!!
Vorspülen		1 - 5 min		
Reinigen		15 - 20 min	60 - 80 °C	Wärme für Lauge und Säure
Desinfizieren		5 min	60 - 80 °C	Wärme für Lauge und Säure
Nachspülen		1 - 5 min		Abwärme


Milchverarbeitung Ö: Prozessmatrix

	Prozesstemp.	Ausgangstemp.	Tempdiff.	Wärmekap.	spez. Wärmebedarf	Bezugsbasis
Milchannahme	\$ °C	\$ °C	*C	3,9 kJ/kgK	0, kJ/kg	Rohmilch
Separierung	55 °C	55 °C	*C	3,9 kJ/kgK	0, kJ/kg	Rohmilch
Baktofugation	55 °C	55 °C	*C	3,9 kJ/kgK	0, kJ/kg	Rohmilch - Rahm
Entkeimung	140 °C	55 °C	85 °C	3,95 kJ/kgK	335,75 kJ/kg	3 % von (Rohmilch - Rahm)
Milchpasteurisierung	75 °C	65 °C	10 °C	3,9 kJ/kgK	39, kJ/kg	Rohmilch - Rahm
Rahmpasteurisierung	105 °C	90 °C	15 °C	3,02 kJ/kgK	45,3 kJ/kg	Rahm
Summe Vorbehandlung						
Kondensmilch	95 °C	70 °C	25 °C	3,9 kJ/kgK	97,5 kJ/kg	H-Milch
Trockenmilchprodukte						Pulvererzeugung
Sauermilchprodukte	40 °C	10 °C	30 °C	3,9 kJ/kgK	117, kJ/kg	Sauerrahm & Topfen & Frischkäse
Käse						
Thermisierung	70 °C	60 °C	10 °C	3,9 kJ/kgK	39, kJ/kg	10 x (Hart- + Schnitt- + Weichkäse)
Wasserzugabe	55 °C	10 °C	45 °C	4,19 kJ/kgK	188,55 kJ/kg	Hart- + Schnitt- + Weichkäse
Casein				_		
Molke	75 °C	35 °C	40 °C	4, kJ/kgK	160, kJ/kg	10 x (Hart- + Schnitt- + Weichkäse)
Lactose				_		
(CIP-)Reinigung	75 °C	65 °C	10 °C	4,19 kJ/kgK	41,9 kJ/kg	0,25 x (3 - 5) x Rohmilch ***
Aussenreinigung	70 °C	45 °C	25 °C	4,19 kJ/kgK	104,75 kJ/kg	5 - 10 % des Gesamtwasserbedarfs

BAT-Doku!!

Typischer Energiefluss in einem milchverarbeitenden Betrieb

Rahmenbedingungen für die Milchverarbeitung am Beispiel Käseproduktion

- Prozesstechnische Hemmnisse für den Einsatz von Solarenergie im Bereich Käseproduktion
- Wirtschaftliche Rahmenbedingungen der österreichischen Käseindustrie
- Einsparungspotenziale im Bereich K\u00e4seproduktion und Milchvorbehandlung

Prozesstechnische Hemmnisse für den Einsatz von Solarenergie im Bereich Milchverarbeitung / Käseproduktion

- Chargenbetrieb
- viele verschiedene Temperaturniveaus m\u00fcssen genau erreicht werden
- Bedarfsprofil: ganzjährig rund um die Uhr

Wirtschaftliche Rahmenbedingungen der Milchverarbeitung in Österreich

- 100 Betriebe in 111 Betriebsstätten (Stand 2003) *
- Strukturwandel abgeschwächt: *

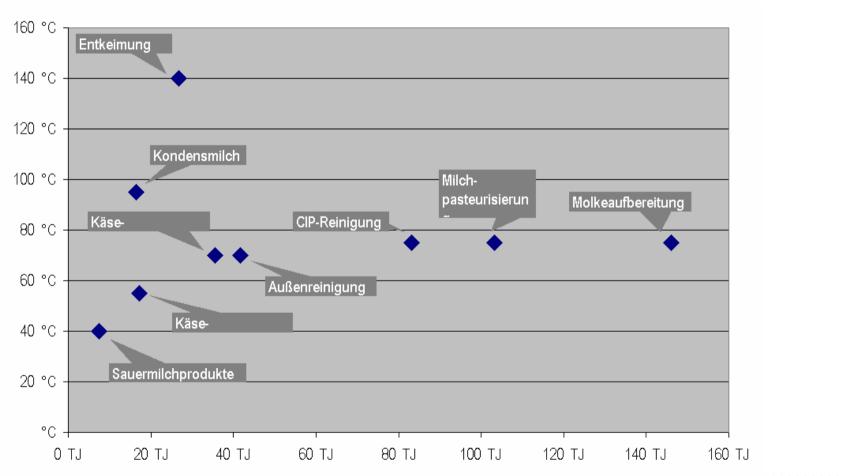
	Betriebe	Betriebsstätten
1995	117	160
2000	105	124
2003	100	111

- 80 % der Produktion in den größten 8 Unternehmen **
- Betriebsgrößen: ***

AgrarMarkt Austria:		

^{** ...} Vereinigung österreichischer Milchverarbeiter: Pressegespräch 14.4.2003 (http://www.voem.or.at)

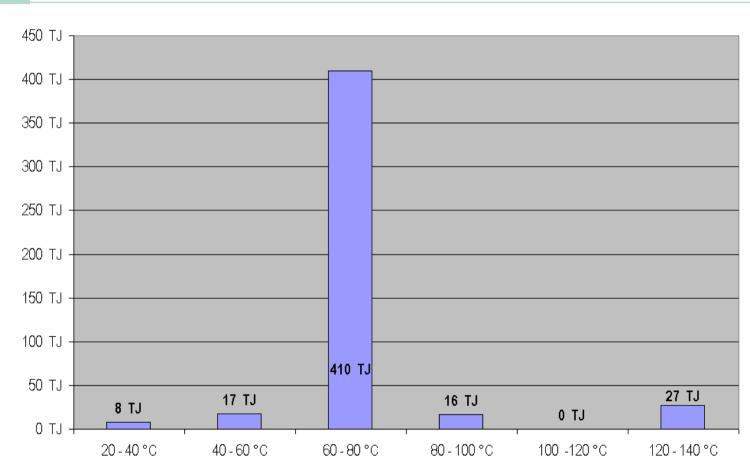
	Unternehmen	Beschäftigte	Produktionswert in 1.000 €
1 - 4	31	87	15.814
5-9	39	264	54.073
10 - 19	13	195	102.296
20 - 49	9	370	144.384
50 - 99	7	419	78.606
100 - 249	10	1.651	591.436
250 - 499	3	1.550	710.824
500 - 999	1	1.550	7 10.024
	113	4.536	1.697.433


^{*** ...} Statistik Austria: Leistungs- und Strukturerhebung 2001

Einsparungspotenziale im Bereich Milchverarbeitung / Käseproduktion

- Proteinstandardisierung durch Ultrafiltration
- Vorwärmen der Käsemilch durch Wärmerückgewinnung aus der Molke einer vorangegangenen Charge
- Mechanische Brüdenkompression in der Molkeeindampfung
- Isolierung der Anlagen, Rohrleitungen und Armaturen
- Einsatz von Frequenzwandlern bei Antriebsmotoren der Pumpen

Milchverarbeitung Ö: Prozesse nach Temperaturniveau und Jahresenergiebedarf



Stand: 16.10.2003

ISO 9001 zertifiziert

Milchverarbeitung Ö: Jahreswärmebedarf nach Temperaturbereichen

INNOVATION aus TRADITION

Stand: 16.10.2003

Seite 21

Weitere Vorgangsweise zum Projektabschluss

- Weitere Fallstudien (Baustoffe, LM,...)
- Hochrechnung von Betrieben auf Branchen
- Hochrechnung von Branchen auf österreichisches Gesamtpotenzial für Industrie- und Gewerbebetriebe

Folgeaktivitäten

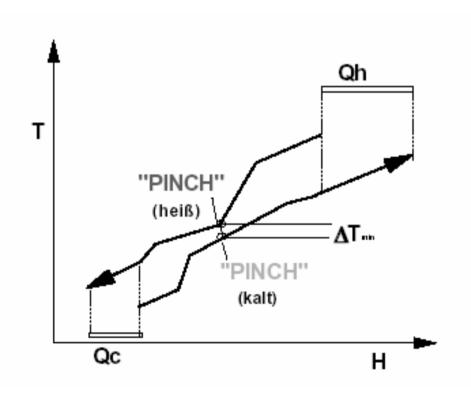
- IEA Annex 33 genehmigt
- SHIP EU-NOE abgelehnt
- Weitere Anfragen zu Fallstudien (kein Geld momentan)

Folgerungen Energiewirtschaft

- Das energietechnische Potential ist groß
- Ein wirtschaftliches Potential ist bereits jetzt vorhanden
- Das Potential f
 ür Hersteller und Planer ist groß
- Bewusstsein in Betrieben ist gering, aber punktuell vorhanden

Folgerungen - Wissenschaft

- Kombination Solarwissen mit Verfahrenstechnik zweckmäßig
- Wissen über Methoden zur Integration von Solarenergie in Produktionsprozesse ist zu gering (Chargenbetrieb, Energiesysteme,...)
- Die Chance über IEA-Annex 33 Österreich als europäischer "Leader" zu installieren ist vorhanden



Wärmeintegrationsanalyse nach der PINCH-Methode (1)

- Einfache Methode zur Optimierung von Energie- und Investitionskosten für Prozesse / Anlagen / Betriebe mit mehreren Heiz- und Kühlprozessen
- Ergebnisse sind
 - minimaler Heiz- und Kühlbedarf
 - WT in Anzahl, Fläche und Verschaltung
 - Investitions- und Betriebskosten der optimalen Wärmeintegration

PINCH-Methode (2)

PINCH-Methode (3): Grundregeln, Ergebnisse

- Grundregeln
 - KEINE Heizmittel oberhalb des Pinch
 - KEINE Kühlmittel unterhalb des Pinch
 - KEINE Wärmeübertragung über den Pinch
- Optimierungsprinzip
 - Minimierung der Temperaturdifferenzen
 - senkt Energiebedarf für Heizen und Kühlen (Betriebskosten)
 - erhöht WT-Flächen (Investitionskosten)

