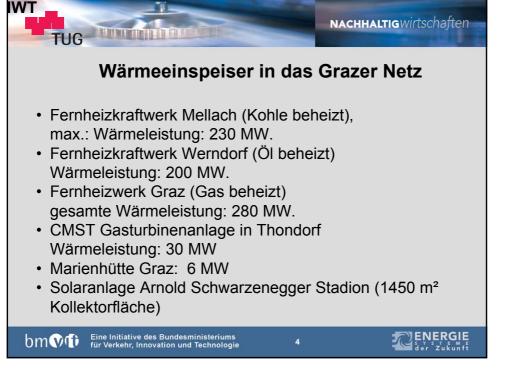
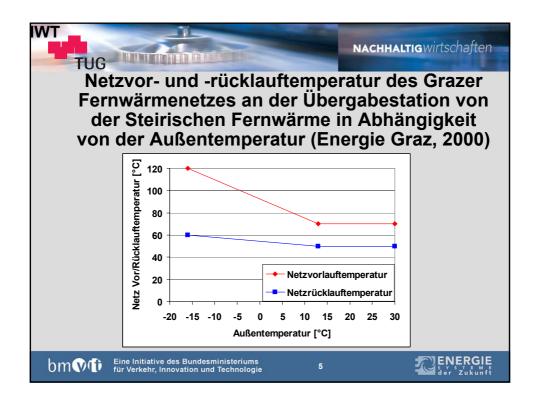
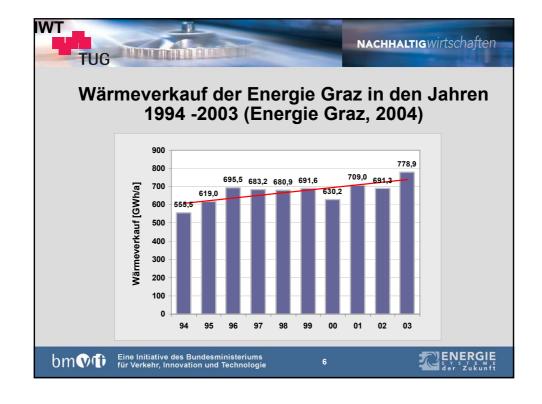
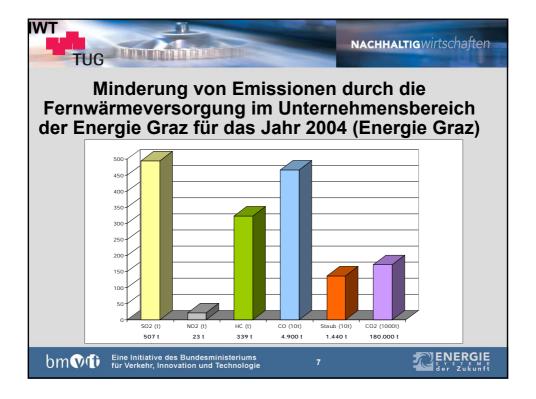

Wolfgang Streicher Institut für Wärmetechnik, TU Graz




bmvt Eine Initiative des Bundesministeriums für Verkehr, Innovation und Technologie





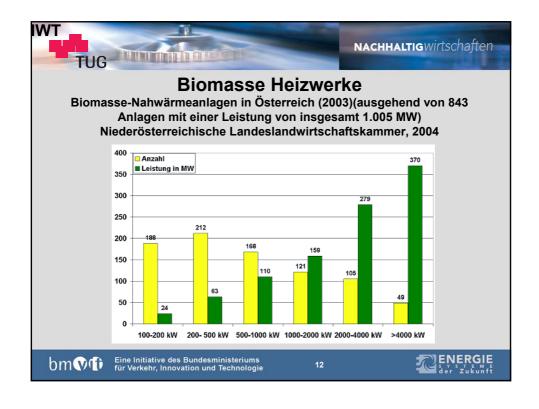
Mögliche Hydraulische Schaltungen für Wärme-Einspeiser

Entnahme und Einspeisung in den Fernwärme Rücklauf

- → Wärmeeinspeiser hat aufgrund der geringen Temperatur hohen Wirkungsgrad
- Pumpenergie durch Netzpumpen: Ungünstig für den Fernwärmenetzbetreiber, da Strömungswiderstand in Fernwärmeleitung um Durchfluss durch den Wärmetauscher zu regeln
- Höhere Rücklauftemperatur erhöht Wärmeverluste des Netzes.
- verringert sich der Wirkungsgrad des primären Wärmeerzeugers durch höhere Rücklauftemperatur leicht verringert
- → Bei Netzen (wie der Grazer Fernwärme) die primär nicht selber Wärmeerzeuger sind, ist zudem manchmal die Rücklauftemperatur zu den Wärmeerzeugern vertraglich fixiert.

bmvti Eine Initiative des Bundesministeriums für Verkehr, Innovation und Technologie


Vom Wärmeeinspeiser


Einspeisung in den Netzrücklauf

Netzvorlauf

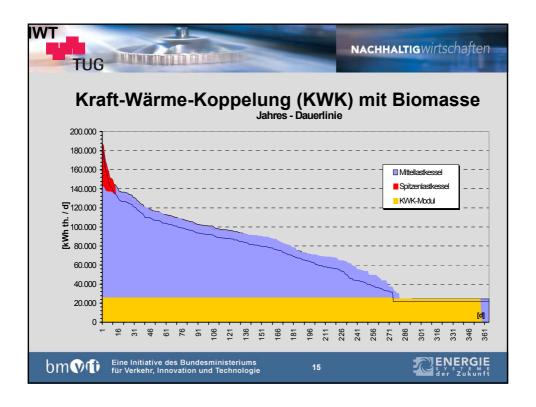
Netzrücklaut

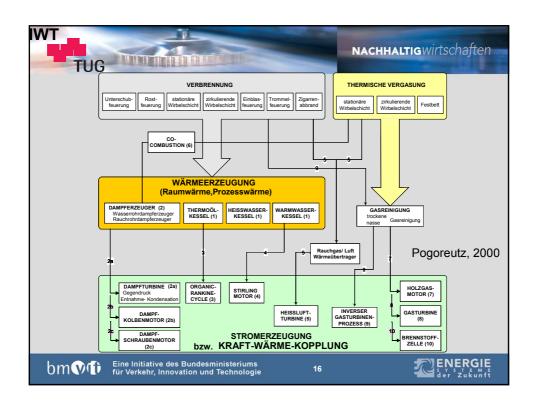
Biomasse Heizwerke

- Kontinuierlicher Zuwachs
- Letzte Erhebung: 843 Anlagen (1.005 MW) per Ende 2003.
- Zusätzlich Nahwärmeanlagen mit einer Leistung von weniger als 100 kW pro Einheit (Mikronetze) (> 600 Anlagen in den letzten Jahren)
- Betreiber:
 - 66 % (561 MW) örtliche bäuerliche Interessentengruppen
 - 21 % (233 MW) Gewerbebetriebe (Einzelunternehmen sowie gewerbliche Zusammenschlüsse, v.a. holzverarbeitende Betriebe) (233 MW).
 - 3 % (157 MW) Größere Energieversorgungsunternehmen.
 - 10 % (54 MW) Gemeinden

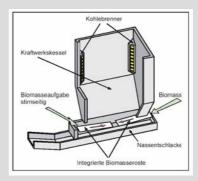
(Niederösterreichische Landeslandwirtschaftskammer, 2004)

bmvti Eine Initiative des Bundesministeriums für Verkehr, Innovation und Technologie



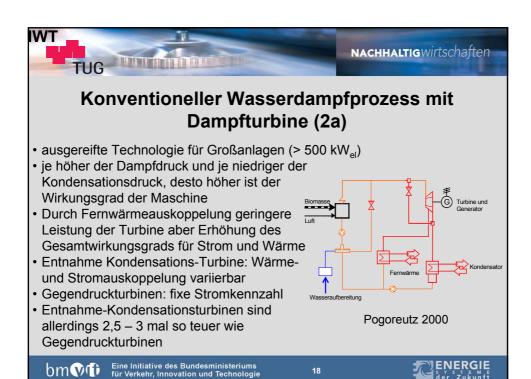

Kraft-Wärme-Koppelung (KWK) mit Biomasse

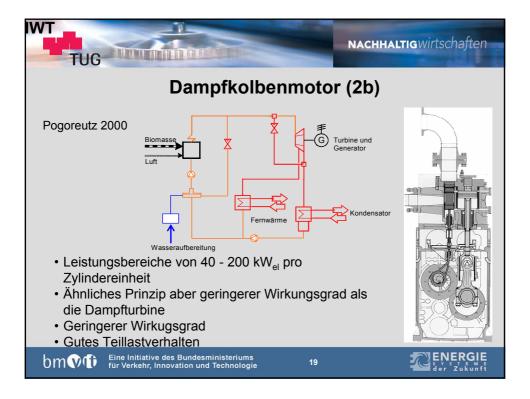
- Hohe Investitionskosten und geringe Betriebskosten
- Durch gute Einspeisetarife für Strom aus Biomasse:
- hohen Volllastbetriebsstunden (größer 6000 h/a)
- Hohe Stromkennzahl (Verhältnis Strom/Wärmeproduktion)
- · Aus Kostengründen auch Wärmeverkauf wichtig
- Daher Auslegung auf Sommerlast oder geringfügig darüber
- Zumeist wärmegeführt betrieben
- Fernwärmenetze mit hohen Sommerlastanteilen wie z.B. ganzjährigen Prozesswärmebedarf durch Industrieoder Gewerbebetriebe prädestiniert
- (Beispiel Güssing mit hoher Sommerwärmelast für die Holztrocknung oder die Papier- und Zellstofferzeugung mit kontinuierlicher ganzjähriger Wärmelast).

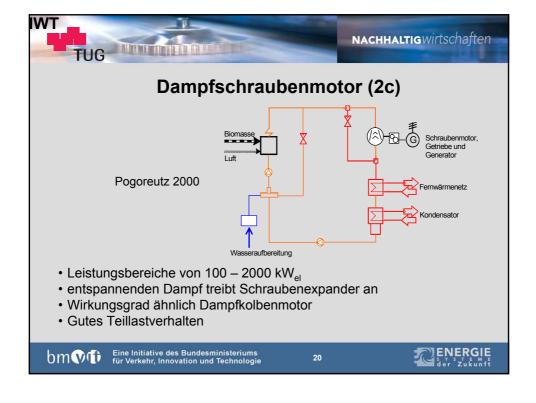


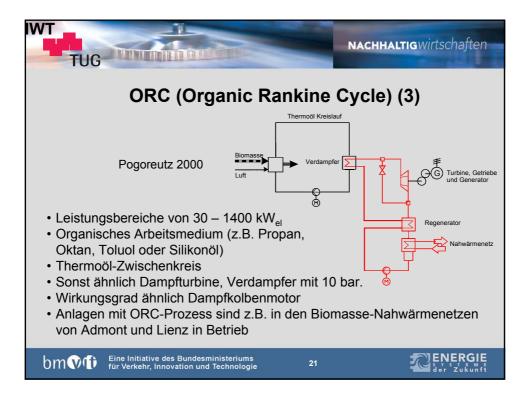
Zufeuerung in konventionellen Kraftwerken mit Dampfturbine

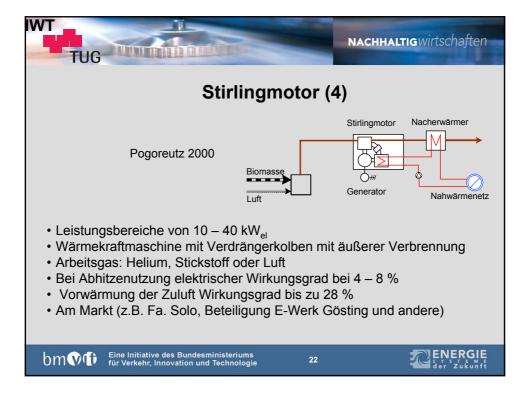
- St. Andrä: 1994 interne Verbrennung mit eigenen 10 MWth Rost nachgerüstet (Probleme durch beschränkten Platzangebot unterhalb des Kessels für Zusatzrost und Biomassezuführung)
- Zeltweg 1997: Vergasung mit zirkulierender Wirbelschicht (Rinde, Hackgut, Altholz, Bahnschwellen, Kunststoffe und Klärschlamm).
 Thermische Leistung 4 - 18 MWth
- Alle aufgrund nicht weiter gegebener Einspeisevergütung wieder eingestellt.

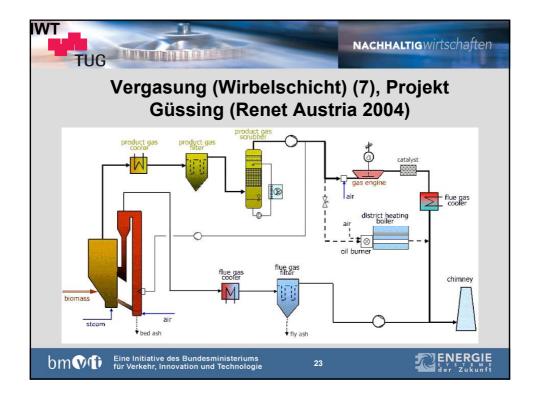

Mory, Tauschitz, 1999

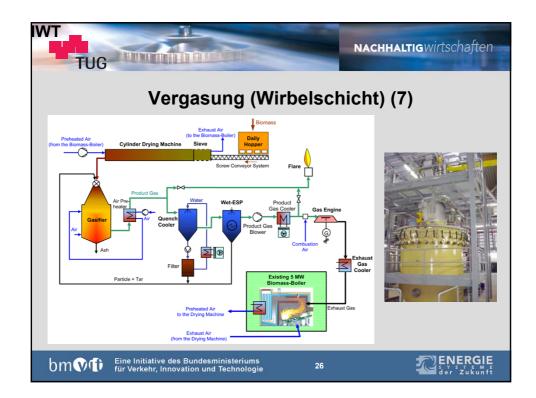



Eine Initiative des Bundesministeriums für Verkehr, Innovation und Technologie


17






Vergasung (Festbett) (7)

- Leistungsbereich ab 15 2000 kW_{elektrisch}
- Vergasung hat generell h\u00f6heren elektrischen Wirkungsgrad als die meisten Dampf- oder Heißluftprozesse
- · Grundlegendes Problem: Produktgasreinigung
- Biomasse möglichst vollständig in CO, CO₂, CH₄, H₂ und H₂O (gasförmig) umgewanden
- Schlechtere Gasqualität als Wirbelschicht (durch schlechtere Vermischung)
- · Höherer Aufwand für Gasreinigung
- Erste Versuchsanlagen: Institut f
 ür W
 ärmetechnik (50 kW_{el}) RENET Austria, Wiener Neustadt)

bmvt Eine Initiative des Bundesministeriums für Verkehr, Innovation und Technologie

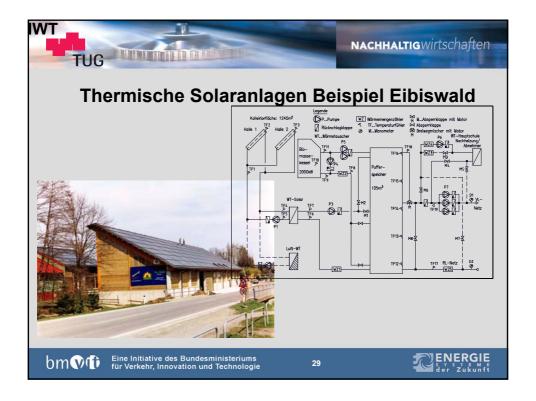
Zusammenfassung Biomasse KWK

(Gaderer, 2003 Pogoreutz, 2000, Kleinberger, 2001, Obernberger, Hammerschmidt, 1999

	Derz. Entwick- lungs- stand	Derz. Leis- tungs- bereich	Vollast- stunden von ausgef Anlagen	Wirkungsgrad		Spez. Investi- tions- kosten	Stromerzeugungskosten (4000 el. Volllastbetriebs- stunden, 30 % Investförd., Brennstoffpr. 0,011 €/kWh
			Wärme	Wärme	Strom		Strom
		[MW _{el}]	[h/a]			[k€/kW _{el}]	[€/kWh]
Zufeuerung in konventionellen Kraftwerken	Demo	2,3 – 600	4000	0,43 – 0,51	0,34 – 0,41	0,36 – 1,6	
Dampfturbine kleiner Leistung	Markreife	0,5 – 5	2900 - 6100	0,42 - 0,71	0,12 - 0,20	2,6 - 8,7	0,061
Dampfturbine großer Leistung	Markreife	4 – 44	3300 - 8000	0,25 - 0,67	0,18 - 0,30	1,0 – 4,7	
Dampfkolben	Markreife	0,1 - 1,6	4500 - 6350	0,63 - 0,79	0,08 - 0,20	0,4 – 4,8	0,071
Dampfschraube	Demo	0,1 – 2		0,73 - 0,77	0,09 - 0,17	1,4 – 6,9	0,063
ORC	Markreife	0,03 – 1,4	6550	0,75 - 0,78	0,06 - 0,17	1,6 – 4,8	0,079
Stirlingmotor	Demo	0,01 - 0,2		0,49 - 0,70	0,07 - 0,28	1,7 – 4,0	0,115
Vergasung Festbett	Demo	0,1 – 2,0	3800 - 5400	0,40 - 0,62	0,18 - 0,28	2,4 – 4,9	0,105
Vergasung Wirbelschicht	Demo	2 - 6		0,31 – 0,50	0,25 - 0,33	1,4 – 3,5	0,110

bmoth

bm v iii Eine Initiative des Bundesministeriums für Verkehr, Innovation und Technologie


Eine Initiative des Bundesministeriums für Verkehr, Innovation und Technologie

27

NACHHALTIGWITTSCHAften Humannon Thermische Solaranlagen · Auslegung maximal auf Energieabgabe an das Netz in MWhj 600 Sommerlast, Vermeidung 500von Stillstand 400 Damit ca. 7 – 15 % solare 300-Deckung · spezifische Kollektorertrag 200 bei ca. 350 - 400 kWh/a 100 • Im Sommer Konkurrenz zu **KWK** 2 3 4 6 7 8 9 10 11 12 Monat □ Solar ■ Biomasse und konventionell

28

