

Clean Energy Partnership – a demonstration project for a hydrogen based mobility

Conference "Hydrogen and Fuel Cells" Vienna 01/04/2004

presented by Volker Jaensch

.

Contents of the Presentation

- Introduction to the German Energy Agency
- The Clean Energy Partnership (CEP)
- Summary and Perspectives

dena

2

Introduction to the German Energy Agency (dena)

- First national Energy Agency in Germany
- Competence Centre for Energy Efficiency and Renewable Energy
- Founded in October 2000
- · Based in Berlin
- 60 employees with various educational and professional backgrounds

3

Ownership Structure of the German Energy Agency

50 Percent Federal Republic of Germany

represented by:

Federal Ministry for Economics and Labour Federal Ministry for Environment, Nature

Conservancy and Nuclear Safety

Federal Ministry for Transport, Building and

Housing

50 Percent Kreditanstalt für Wiederaufbau (KfW-Group)

Managing Director Stephan Kohler

dena

4

Clean Energy Partnership Berlin

- German traffic-related energy strategy, Interim Report 2001:
 - "....Hydrogen is the most promising fuel for the mobility of the future...."
 - "..... but a lot of questions have to be solved regarding production, storage, security standards, regulations, set-up of infrastructure, utilisation in vehicles, costs, acceptance...."
- Demonstration projects provide opportunities to gain experiences and to develop solutions regarding these questions
- Nine industry partners will realise the CEP demonstration project with support of the German government in the framework of a Public Private Partnership

Clean Energy Partnership Berlin

the Political Area by dena

Clean Energy Partnership Berlin

Project Aims:

- Testing and demonstration of:
 - Central production, transportation, distribution, storage and fuelling of LH₂
 - Local production, aggregation, storage and fuelling of CGH,
 - Operation, service and maintenance of H₂-cars equipped with fuel cells or internal combustion engines and the filling station
- Application of advanced technologies
- Verification of suitability for daily use and of clients' acceptance
- First time integration of H₂-technology in a standard filling station equipped with conventional fuel, shop and washing-bay
- Investment costs: 33 Mio. €(including cars), thereof 5 Mio. € subsidy

Deutsche Energie Agentur

Demonstrated Hydrogen Car Technologies

Partner	Car	Drive	Tank
BMW	2 BMW 7 LH series	H ₂ ICE	LH ₂
Daimler Chrysler	10 A-class F – Cell	Fuel Cell (Ballard)	CGH ₂
Ford	3 Ford Focus FCEV	Fuel Cell (Ballard)	CGH ₂
Opel	1 Opel HydroGen3	Fuel Cell (GM / Opel)	LH ₂

Additionally: Shop Floor for ${\rm H_2}\textsc{-Busses}$ and ${\rm H_2\textsc{-}Cars}$ provided by BVG and the Mobility Partners

9

Demonstrated Hydrogen Infrastructure Technologies

Partner	Task
Aral / BP	Planning and set-up of an integrated H ₂ -filling station
Hydro / GHW	On site GH ₂ production via electrolyses
Linde	Supply with centrally produced LH ₂ (reformer), LH ₂ fuelling
Vattenfall	Supply with electricity based on renewable energy

Advantages of H₂-Utilisation

Fuel Cell Cars

- Noticeable higher efficiency (state of the art: 37 %, potential > 45 %)
- No exhaust emissions
- Lower WTW CO₂- emissions
- Low noise, high elasticity of the electric drive
- Additional benefit: On board electricity

ICE Cars

- Earlier market entry than for fuel cell cars expected
- Currently higher performance drives available

1

Expected results

- Comparison of different H₂- drives and H₂- fuelling concepts (suitability for daily use, H₂- consumption, reliability, life time, maintenance)
- Comparison of different production chains and supply concepts (energy efficiency, costs, environmental compatibility, reliability)
- Experiences with the planning and authorisation procedure
- Contribution to the harmonisation of standardisation and regulation processes
- Dialog with the public regarding the use of H₂ in every day life and experiences with the acceptance by clients
- Verification of H₂- technologies' safe operation (production, transport, storage, fuelling, usage of cars)

13

Summary

- Hydrogen has the potential to fulfil the requirements of a sustainable mobility
- Decisions in industry and politics require further experiences stemming from studies on infrastructure and demonstration projects
- The CEP project will provide important results and answers for the decision making process related to technological, economic and political questions

