

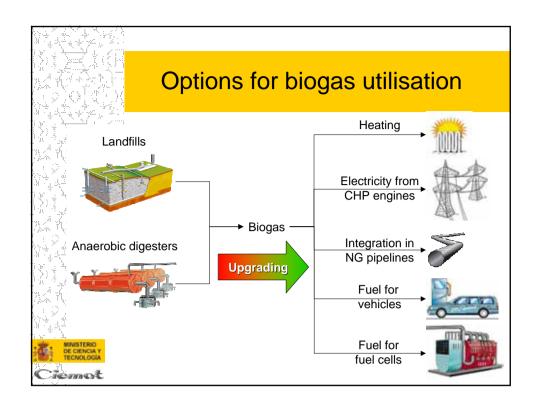
Outline

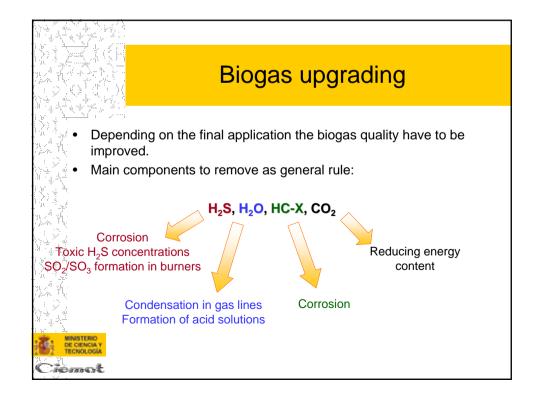
- Biogas as renewable fuel
- Application to fuel cells
- Fuel cells requirements
- Upgrading biogas
- Future perspectives

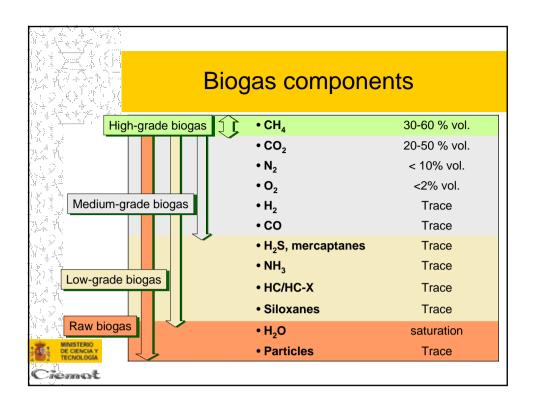
Biogas as renewable energy source

- Sustainable development: limitation of fossil fuels use
- Renewables
 - Biofuels: can be stored and transported more easily than other renewable energy sources.
 - Biogas
 - Landfill gas
 - Anaerobic digestion gas:
 - » Industrial waste water treatment
 - » Stabilisation of sewage sludge
 - » Recycling of biowaste, agricultural waste and manure as organic fertilizers

Biogas composition


• Main components:


• Other:


 Its energy content is defined by the methane concentration:

10%
$$CH_4 \Rightarrow 1 \text{ kWh} \cdot \text{m}^{-3}$$

Biogas purity grades Options for its final use depend on the degree of processing. Level of processing affects the economics of the application: Low-grade: Heating (end-user must be in the proximity) Medium-grade: Heating Gas engines Combined heat and power (CHP) High grade: Pipeline quality gas Production of chemicals Fuel for vehicles Fuel for FC iemot

From biogas to electricity Options: Efficiency **Emissions** Gas engines and turbines Require upgrading to medium grade Combined heat and biogas power plants Require biogas Fuel cells upgrading & processing to obtain hydrogen iemot

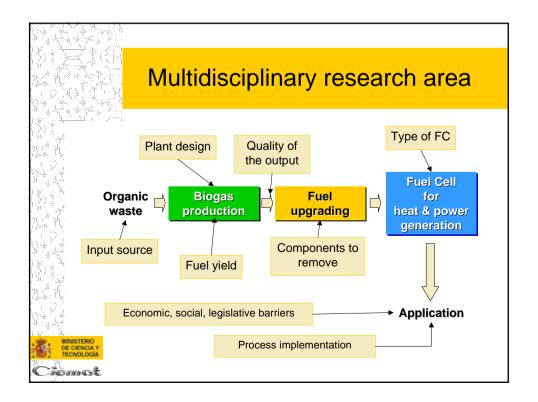
LFG and AD biogas revalorization

• Main problem associated to biogas:

variability of its composition: depends on the source and varies with time

For low CH₄ contents:

ignition problems in ICE: mixtures usually vented after being burned in flares


can be used in FC after upgrading by using CO₂ instead of water as source of oxygen for producing H₂/CO by reforming

Fuel Cells for biogas conversion

- High temperature FCs: MCFCs, SOFCs
 - Upgrading before reforming: removal of sulfur compounds, NH₃, halogenated HC, siloxanes
 - More tolerant to impurities
 - May operate with H₂/CO/CO₂ mixtures
- Low temperature FCs: PEMFCs
 - Upgrading before reforming: removal of sulfur compounds, NH₃, halogenated HC, siloxanes
 - Fuel processing after reforming to reduce CO levels below 10 ppm.

Fuel Cell feeding requirements

Component	PEMFC	PAFC	MCFC	SOFC
H ₂	Fuel	Fuel	Fuel	Fuel
со	Poison (10 ppm)	Poison (10 ppm)	Fuel	Fuel
CH₄	Inert	Inert	Fuel	Fuel
CO ₂ , H ₂ O	Diluent	Diluent	Recycled	Diluent
Sulfur	< 200 ppb	Poison <50 ppm H ₂ S+COS	Poison 0.1-0.5 ppm H ₂ S	Poison < 1 ppm H ₂ S
Halogens		Poison 4 ppm	Poison < 0.1-1.0 ppm	Poison < 1 ppm

Fuel cell types

Š	Fuel cell type	Electrolyte	Charge carrier	Operating temperature	Fuel	Power range/ applications	Electrical efficiency % today (target)
À	Alkaline FC (AFC)	кон	OH ⁻	50-100°C	Pure H ₂	Aerospace	40-60
1	Proton exchange membrane FC (PEMFC)	Solid polymer (such as Nafion)	H+	50-100°C	Pure H ₂ (tolerates CO ₂)	Automotive, CHP, (5-250 kW) portable	35 (45)
į.	Phosphoric acid FC (PAFC)	Phosphoric acid	H⁺	~ 220°C	Pure H ₂ (tolerates CO ₂ , approx. 1% CO)	CHP (200 kW)	<42
	Molten carbonate FC (MCFC)	Lithium and potassium carbonate	CO ₃ ²	~ 650°C	H ₂ >, CO, CH ₄ , other hydrocarbons (tolerates CO ₂)	200 kW - 2 MW range, CHP and stand-alone	47 (60)
y.	Solid oxide FC (SOFC)	Solid oxide electrolyte (yttria, zirconia)	O ² -	~ 1000°C	H ₂ , CO, CH ₄ , other hydrocarbons (tolerates CO ₂)	2-1000 kW range, CHP and stand- alone	47 (65)

Biogas upgrading technologies

- · Removal of moisture and particles
- Removal of trace gases:
 sulfur compounds, halogen compounds, siloxanes
- Carbon dioxide stripping

Moisture removal techniques

- Moisture separators: reduce the gas flow velocity and allows liquid droplets to condensate in the vessel walls.
- Mist eliminator: filters with high surface area allows frther condensation. It also allows particles removal. In combination with moisture separators removes 99.9% of the liquids.
- Gas cooling and compression: decreases the dew point of the gas.
- **Absorption technology:** liquids with high water affinity: glycols: EG, DEG, TEG. Require regeneration
- Adsorbent materials: silica gel, alumina, molecular sieves. Require regeneration.

Removal of H₂S

- Adsorbents: activated carbon impregnated with KI (high affinity with H₂O reduces its potential for traces removal the moisture removal step is not efficient)
- Iron sponge, Fe₂O₃ pellets: removal of H₂S by formation of iron sulphide (25-50°C). Adsorbent regeneration by oxidation: Fe₂O₃ + S (highly exothermic).

2-column system for H₂S scrubbing with iron oxide

- Selective solvents:
 - Water scrubbing
 - NaOH scrubbing (Na₂S, HNaS)
 - Alkanolamine process: selective solvents mainly for for H₂S and CO₂: MEA, DEA, TEA
 - Selexol scrubbing (polyethylene glycol)

H₂S removal

- Addition of FeCl₃ in digesters: very effective method but needs to be complemented with another removal method to reduce H₂S level.
- Biological desulphurisation: thiobacillus
 Autotrophic organism consuming CO₂ and producing S and SO₄²⁻. Requires addition of some amount of O₂ (2-6%) and reduce H₂S level below 50 ppm. (Biogas in air is explosive in the range of 6 12 % depending on the methane content.) It is suitable for gas engines but not for FC.
- Biological filters: combination of water scrubbing and biological desulphurisation

Siloxane removal

Organic silicon compounds are occasionally present in biogas and may affect adversely to FC performance: are widely used in cosmetics, pharmaceuticals and in anti-foaming agents in detergents

- Adsorption in a mixture of hydrocarbons: adsorbent regenerated by heating and desorption
- Cooling to -2°C and adsorption in charcoal

Halogenated hydrocarbons removal

Higher hydrocarbons and chlorinated and fluorinated compounds are commonly found in LFG: corrosive agents

 Removal by pressurized tube exchangers filled with activated carbon: PSA units
 Regeneration by desorption at 200°C.

PSA unit for biogas, for $\rm H_2S$, halogenated carbons, and $\rm CO_2$ removal

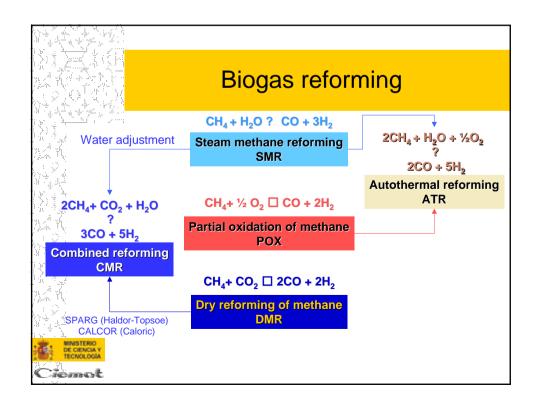
Carbon dioxide stripping

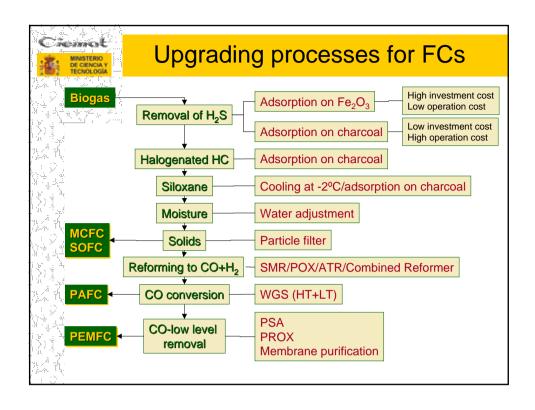
- · Solvent extraction:
 - Water scrubbing
 - Polyethylene glycol scrubbing (Selexol)

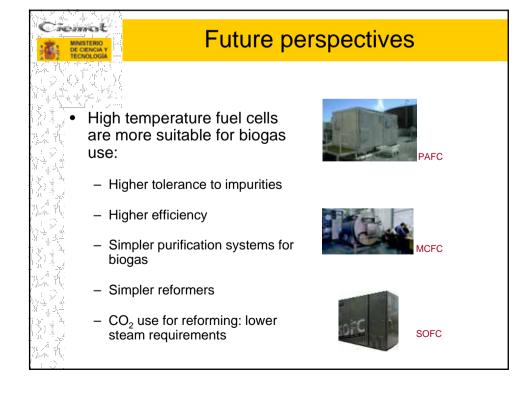
Renton plant Seattle, USA

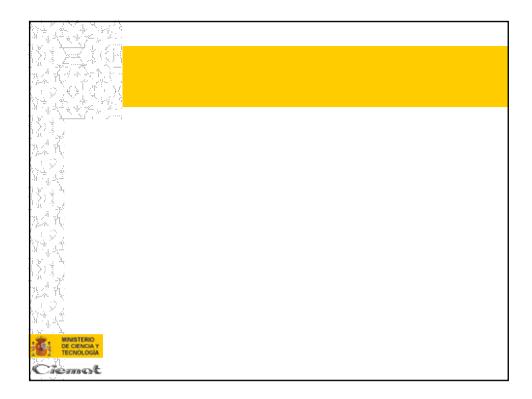
• Adsorption:

- uses a series of molecular sieves to reduce CO₂ level below 1%.


• Membrane separation:


- High pressure: selective permeation membranes typically composed of cellulose acetate have been used for these purposes.
- Gas-liquid absorption membranes: (NaOH). Operate at low pressure (1 atm) and temperature (35°C).




PSA systems (Pressure Swing Adsorption) 1 Pressure adsorption 2 Co-current despressurisation 3 Counter-current despressurisation 4 Purge 5 Pressurisation

Adsorbents in PSA systems						
	Adsorbent	Application: removed component				
	Silica gel	H ₂ O				
	Activated alumina	H ₂ O				
	Activated carbon	CO ₂ , CH ₄ , (CO)				
	Zeolites	CO, N ₂ , CH ₄				
	ZnO	H ₂ S, sulfur containing compounds				
MNSTERIO DE CIENCALA TECNOLOGIA						

