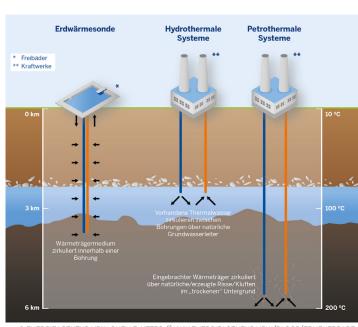


scenario editor


Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

TECHNOLOGIE-STECKBRIEF

Tiefen-Geothermie

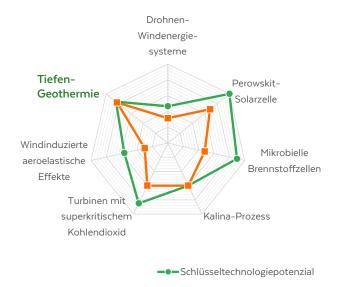
KURZBESCHREIBUNG

Tiefengeothermische Anlagen nutzen die im Untergrund in etwa 1.500 m bis 5.000 m Tiefe vorhandene Wärme (Temperaturen über 60°C) zur Bereitstellung von Wärme und/oder zur Erzeugung von Strom. Obwohl innovative Erschließungskonzepte wie das "Enhanced Geothermal System" (EGS; auch Hot Dry Rock Verfahren genannt) ein erhebliches Potenzial aufweisen, können EGS Verfahren lokal Erdstöße auslösen (z.B. bei dem Deep-Heat-Mining Projekt in der Schweiz mit einer Stärke von bis zu 3,5 Punkten auf der Richter Skala).

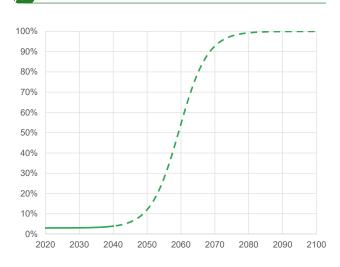
© ENERGIEAGENTUR.NRW, QUELLE: HTTPS://WWW.ENERGIEAGENTUR.NRW/BLOGS/ERNEUERBARE/ FAQ/WELCHE-NUTZUNGSVERFAHREN-DER-TIEFEN-GEOTHERMIE-GIBT-ES/

☑ Technology Readiness Level (TRL)

Hydrothermal


Petrothermal

Technologiepotenzial

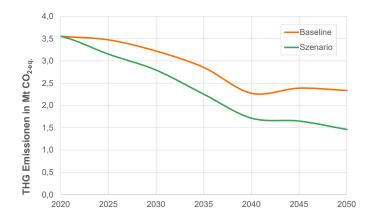

Das thermische (tiefe) Geothermiepotenzial wird in Studien für Österreich auf bis zu rund 60 TWh (thermisch) eingeschätzt. Somit sollte via Verstromung ein Potenzial von knapp 8 TWh (elektrisch) möglich sein.

Schlüsseltechnologiepotenzial zukunftsweisender Energiebereitstellung und F&E-Stand in Österreich

F&E-Stand in Österreich

Erwartbare Technologiediffusion

scenario editor


Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Forschungs- und Entwicklungsbedarf

- verbesserte Erkundungsmethoden zur Minimierung des Fündigkeitsrisikos
- Verfahren zur signifikanten Kostensenkung und Sicherung nachhaltiger Lagerstättenproduktivität
- Akzeptanz- und vergleichende Risikoanalysen zur Nutzung des unterirdischen Raumes

Beitrag zum Klimaschutz

- THG-Reduktionspotenzial durch Geothermie liegt gegenüber Erdgas bei rund -65 %
- grundlastfähige Strombereitstellung
- strom- und wärmegeführte Betriebsweise möglich

Baseline - Tiefe Geothermie ■Kohle ■ Heizöl ■ Erdgas KWK-Abwärme Umgebungswärme Geothermie Solarthermie ■Feste Biomasse 18 16 Bereitstellung von Fernwärme in TWh 14 12 10 8 6 4 2 2010 2020 2025 2030 2035 2040 2045 2050

Beschleuniger (+) und Hemmnisse (-)

- Geologische Komplexitäten und hohes Fündigkeitsrisiko
- Lange Planungs- und Entwicklungszeiten
- Seismologische Gefahren durch EGS

Kritische und fördernde Faktoren für die Technologiediffusion in Österreich

Tiefe Geothermie

Forschungskompetenzen und -kooperationen entsprechend dotierte Forschungsförderungen Kompatibilität mit bestehender Infrastruktur in bestehende Marktsysteme integrierbar Produktionskapazitäten von Schlüsseltechnologien Erreichbarkeit wettbewerbsfähiger Marktpreis gesellschaftliche Akzeptanz Koordination auf Akteurlnnen-Ebene

Anzahl Nennungen im Rahmen einer ExpertInnen-Befragung. Orange: kritische Faktoren; grün: fördernde Faktoren

Beitrag zum Umweltschutz

- direkte Substitution fossiler Energieträger, vor allem im Wärmesektor
- äußerst geringer Flächenverbrauch

■ Kohle ■ Heizöl Erdgas KWK-Abwärme Umgebungswärme ■ Geothermie ■ Solarthermie ■Feste Biomasse 18 16 ΤWh 14 Bereitstellung von Fernwärme in 12 10 8 6 4 2 2010 2020 2025 2030 2035 2040 2045 2050

Szenario - Tiefe Geothermie