REVITALISIERUNG MIT S.A.M.

S.A.M. Gesamt

S.A.M. 01 _ Sanierung Altenheim Landeck

S.A.M. 02 _ Sanierung Plattenbauten Bratislava

S.A.M. 03 _ Sanierung Gründerzeithöfe Wien

4.6 Heizwärmebedarfsberechnung (DI Gerhild Stosch)

4.6.1 Heizwärmebedarfsberechnung Bestand

Altenheim Teilsaniert - Berechnungsergebnisse

Bruttogeschoßfläche: 6.061,00 m²
Bruttovolumen: 20.189,00 m³
Gebäudehüllfläche: 7.472,26 m²
charakteristische Länge 2,70 m
Art der Bauweise: schwer
Lüftung: Es wurde über das gesamte Lüftungsvolumen eine

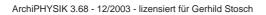
mit einer Luftwechselzahl von 0,5 gerechnet. (Annahme Undichtheit der Westfenster)

Berechnungsgrundlage:

Heizwärmebedarf und Energiekennzahl nach dem OIB - Verfahren (Berechnungsleidfaden des Österr. Institutes für Bautechnik) Jahresbilanzverfahren

Wärmebrücken wurden pauschaliert nach den Leitlinien Wohnbauförderung Wien U-Wert der zusammengesetzten Buateile nach EN 6946

Plangrundlage: Einreichplanung


Flächenzusammenstellung: Gharakhanzadeh / Sandbichler Bauteilangaben zur Berechnung: Gharakhanzadeh / Sandbichler

BAUTEIZUSAMMENSTELLUNG

TYP	BAUTEIL / BAUTEILSCHICHTEN	d	λ U-Wert [W/m²K]
AF 01	Fenster West	g=0,75	2,6
	Rahmenmaterial Holz		
AF 03	Fenster Ost	g = 0,46	1,0
	Rahmenmaterial Kunststoff		
AF 04	Fenster Nord	g = 0,46	1,0
	Rahmenmaterial Kunststoff		
AF 05	Fenster Süd	g = 0,46	1,0
	Rahmenmaterial Kunststoff		
AF 07	Lichtkuppeln	g = 0,75	2,5

					Seite 1
ΕN	NERGIEAUSWEIS für Wien				
		Er	rgebnisse		
Bau	vorhaben				
	Objekt:	Altenheim Landek Te	eilsaniert		
	Grundparzelle:	6500 Landecl			
	Standort:	6500 Landeci	N.		
Geb	äudehülle				
	Fläche der wärmeab	gebendenden Gebäudehülle	e A _B	7.472,26	[m ²]
	Charakteristische Lä	nge	l _c	2,70	[m]
Leit	werte				
	Leitwerte für Bauteile	,	$L_e + L_u + L_q$	5.589,47	[W/K]
	Leitwertzuschläge fü	r Wärmebrücken	L _W + L _y	2,20	[W/K]
	Transmissions-Leitw	ert der Gebäudehülle	$L_T = L_e + L_u + L_g + L_{\psi} + L_{\gamma}$	5.591,67	[W/K]
	Lüftungs-Leitwert de	r Gebäudehülle	L _V	2.498,38	[W/K]
	Gesamt-Leitwert			8.090,06	[W/K]
7177	zifische Kennza				3
	Mittlerer Wärmedurch		$U_{m} = L_{T} / A_{B}$	0,748	[W/(m ² K)
		ert		47,74	[-]
	Vorhandener LEK-We				riner dies
		ansmissions-Wärmeverlust	$P_{T,V} = L_T / V_B$	0,27	TVV/(m°K)
2.	Volumsbezogener Tra		$P_{T,V} = L_T / V_B$	0,27	[W/(m°K)
2.	Volumsbezogener Tra	ansmissions-Wärmeverlust	1 5	0,27 528.614,91	[kWh/a]
2.	Volumsbezogener Tra	ansmissions-Wärmeverlust d Wärmeverluste	11		
2.	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus	ansmissions-Wärmeverlust d Wärmeverluste everluste in der Heizwärmepe	riode Q _T	528.614,91	[kWh/a]
2.	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus Solare Wärmegewinn	ansmissions-Wärmeverlust d Wärmeverluste everluste in der Heizwärmeperiode	eriode Q _T	528.614,91 236.187,67	[kWh/a]
	Vorhandener LEK-We				
2.	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus	ansmissions-Wärmeverlust d Wärmeverluste everluste in der Heizwärmeperiode	eriode Q _T	528.614,91 236.187,67	[kWh/a]
2.	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus Solare Wärmegewinn	ansmissions-Wärmeverlust d Wärmeverluste everluste in der Heizwärmeperiode ne in der Heizwärmeperiode	rriode Q_T Q_V Q_s	528.614,91 236.187,67 192.475,06	[kWh/a] [kWh/a] [kWh/a]
2.	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus Solare Wärmegewinn Interne Wärmegewin	ansmissions-Wärmeverlust d Wärmeverluste everluste in der Heizwärmeperiode ne in der Heizwärmeperiode	priode Q_T Q_V Q_s Q_i	528.614,91 236.187,67 192.475,06	[kWh/a] [kWh/a] [kWh/a]
2.	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus Solare Wärmegewinn Interne Wärmegewin	ansmissions-Wärmeverluste d Wärmeverluste everluste in der Heizwärmeperiode ne in der Heizwärmeperiode ne in der Heizwärmeperiode	priode Q_T Q_V Q_s Q_i	528.614,91 236.187,67 192.475,06 170.920,20	[kWh/a] [kWh/a] [kWh/a]
2.	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus Solare Wärmegewinn Interne Wärmegewin	ansmissions-Wärmeverluste d Wärmeverluste everluste in der Heizwärmeperiode ne in der Heizwärmeperiode ne in der Heizwärmeperiode	priode Q_T Q_V Q_s Q_i	528.614,91 236.187,67 192.475,06 170.920,20	[kWh/a] [kWh/a] [kWh/a]
Wär	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus Solare Wärmegewinn Interne Wärmegewin Verhältnis von Wärm	ansmissions-Wärmeverlust d Wärmeverluste everluste in der Heizwärmeperiode ne in der Heizwärmeperiode ne in der Heizwärmeperiode ne in der Heizwärmeperiode egewinnen zu Wärmeverlust	priode Q_T Q_V Q_s Q_i	528.614,91 236.187,67 192.475,06 170.920,20	[kWh/a] [kWh/a] [kWh/a]
Wär	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus Solare Wärmegewinn Interne Wärmegewin	ansmissions-Wärmeverlust d Wärmeverluste everluste in der Heizwärmeperiode ne in der Heizwärmeperiode ne in der Heizwärmeperiode ne in der Heizwärmeperiode egewinnen zu Wärmeverlust	priode Q_T Q_V Q_s Q_i	528.614,91 236.187,67 192.475,06 170.920,20	[kWh/a] [kWh/a] [kWh/a]
Wär	Volumsbezogener Tra megewinne und Transmissionswärme Lüftungswärmeverlus Solare Wärmegewinn Interne Wärmegewin Verhältnis von Wärm Anforderungsklasse wärmebedarf	d Wärmeverluste d Wärmeverluste everluste in der Heizwärmeperiode ne in der Heizwärmeperiode ne in der Heizwärmeperiode ne in der Heizwärmeperiode egewinnen zu Wärmeverlust e I	priode Q_T Q_V Q_s Q_i	528.614,91 236.187,67 192.475,06 170.920,20	[kWh/a] [kWh/a] [kWh/a]

Soito 2

ENERGIEAUSWEIS für Wien

Beiblatt 1

Ermittlung der Transmissionswärmeverluste

Pos		Bauteil	Fläche	U(k)-Wert	Korr. Fakt. f	A*U*f
Тур	Typ Nr.		[m ²]	$[W/(m^2K)]$	[-]	[W/K]
AD	FD01	Flachdach Bestand / gedämmt	1.235,00	0,12	1,00	156,8
AD	FD02	Flachdach Bestand / gedämmt EG	270,00	0,12	1,00	34,2
AD	FD03	Terrassen	122,00	0,64	1,00	78,5
AF	AF01a	Fenster West	993,00	2,60	1,00	2.581,8
AF	AF03	Fenster Süd	22,00	1,00	1,00	22,0
AF	AF04	Fenster Ost	527,00	1,00	1,00	527,0
AF	AF05	Fenster Nord	34,00	1,00	1,00	34,0
AW	AW02	Aussenwand OST Bestand gedämm	t 1.212,00	0,19	1,00	232,7
AWh	AW01	Aussenwand Süd Schoten unged.	970,00	1,36	1,00	1.326,9
DD	DD01	Decke über Durchfahrt EG	122,00	0,56	1,00	68,9
DF	AF07	Flachdach fenster	4,00	2,50	1,00	10,0
DGK	DE01	Decke zu Keller	985,86	0,50	0,50	250,9
EB	DE 02	Decke zu Erde	936,40	0,51	0,50	240,1
WGU	AW06	Aussenwand Süd gg WG	39,00	1,29	0,50	25,2
Leitv	verte für l	Bauteile gegen Aussenluft, unbeheizte	Gehäudeteile Erdreich L	+ L _u + L _a	[W/K]	5.589,4
		Saucile gegen Ausserhalt, unberleizte	Cebaddetelle, Erdreich –		[vv/iv]	5.569,4
		läge für linienförmige und punktförmig		L _ψ + L _γ	[W/K]	200000000000000000000000000000000000000
Leitv	vertzusch			$L_{\psi} + L_{\gamma}$		2,2
Leitv	vertzusch	läge für linienförmige und punktförmig	ge Wärmebrücken $L_{T}=L_{e}+L_{u}+L_{e}$	$L_{\psi} + L_{\gamma}$	[W/K]	2,2 5.591,6 0,74
Tran Mittle	vertzusch smission: erer Wärr	läge für linienförmige und punktförmig s-Leitwert der Gebäudehülle nedurchgangskoeffizient	ge Wärmebrücken $L_T = L_e + L_u + L_g$ $U_m =$	$L_{\psi} + L_{\gamma}$ $g + L_{\psi} + L_{\gamma}$ L_{T}/A_{B}	[W/K] [W/K] [W/(m ² K)]	2, 5.591, 0,7
Tran Mittle	vertzusch smission erer Wärr smissio	läge für linienförmige und punktförmig s-Leitwert der Gebäudehülle	ge Wärmebrücken $L_T = L_e + L_u + L_g$ $U_m =$ $Q_T = 0.024 * L_T * Ho$	$L_{\psi} + L_{\gamma}$ $g + L_{\psi} + L_{\gamma}$ L_{T}/A_{B}	[W/K]	2,2 5.591,6 0,74
Tran Mittle	vertzusch smission erer Wärr smissio	läge für linienförmige und punktförmig s-Leitwert der Gebäudehülle nedurchgangskoeffizient nswärmeverluste	ge Wärmebrücken $L_T = L_e + L_u + L_g$ $U_m =$ $Q_T = 0.024 * L_T * Ho$	$L_{\psi} + L_{\gamma}$ $g + L_{\psi} + L_{\gamma}$ L_{T}/A_{B}	[W/K] [W/K] [W/(m ² K)]	2,2 5.591,6 0,74 528.614,9
Tran Mittle Tran Ern Belüf	vertzusch smission erer Wärr smissio	läge für linienförmige und punktförmig s-Leitwert der Gebäudehülle nedurchgangskoeffizient nswärmeverluste g der Lüftungswärmeverlu	ge Wärmebrücken $L_T = L_e + L_u + L_g$ $U_m =$ $Q_T = 0.024 * L_T * Ho$	$L_{\psi} + L_{\gamma}$ $g + L_{\psi} + L_{\gamma}$ L_{T}/A_{B} $GT_{Standort}$	[W/K] [W/K] [W/(m ² K)] [kWh/a]	2,2 5.591,6 0,74 528.614,9
Tran Mittle Tran Belüf	vertzusch smission erer Wärr smissio nittlun ftetes Net	läge für linienförmige und punktförmig s-Leitwert der Gebäudehülle nedurchgangskoeffizient nswärmeverluste g der Lüftungswärmeverlu	ge Wärmebrücken $L_T = L_e + L_u + L_g$ $U_m =$ $Q_T = 0.024 * L_T * Ho$	$L_{\psi} + L_{\gamma}$ $g + L_{\psi} + L_{\gamma}$ L_{T}/A_{B} $GT_{Standort}$	[W/K] [W/K] [W/(m ² K)] [kWh/a]	2,2 5.591,6 0,74 528.614,9 15.141,7
Tran Mittle Tran Ern Belüf	vertzusch smission erer Wärr smissio nittlun ftetes Net vechselra ohne m	läge für linienförmige und punktförmig s-Leitwert der Gebäudehülle nedurchgangskoeffizient nswärmeverluste g der Lüftungswärmeverlu tto-Volumen des Gebäudes te n	ge Wärmebrücken $L_T = L_e + L_u + L_g$ $U_m =$ $Q_T = 0.024 * L_T * Ho$	$L_{\psi} + L_{\gamma}$ $g + L_{\psi} + L_{\gamma}$ L_{T}/A_{B} $GT_{Standort}$	[W/K] [W/K] [W/(m ² K)] [kWh/a]	2,2 5.591,6
Tran Mittle Tran Belüf	vertzusch smission erer Wärr smissio nittlun ftetes Net vechselra ohne m	läge für linienförmige und punktförmig s-Leitwert der Gebäudehülle nedurchgangskoeffizient nswärmeverluste g der Lüftungswärmeverlu tto-Volumen des Gebäudes te n echanische Lüftungsanlage	pe Wärmebrücken $L_T = L_e + L_u + L_y$ $U_m =$ $Q_T = 0,024 * L_T * H0$ uste	$L_{\psi} + L_{\gamma}$ $g + L_{\psi} + L_{\gamma}$ L_{T}/A_{B} $GT_{Standort}$	[W/K] [W/K] [W/(m ² K)] [kWh/a]	2,2 5.591,6 0,74 528.614,9 15.141,7
Tran Mittle Tran Belüf	vertzusch smission erer Wärr smissio nittlun ftetes Net vechselra ohne m mas Nut	läge für linienförmige und punktförmig s-Leitwert der Gebäudehülle nedurchgangskoeffizient nswärmeverluste g der Lüftungswärmeverlu tto-Volumen des Gebäudes te n lechanische Lüftungsanlage	ge Wärmebrücken $L_T = L_e + L_u + L_y$ $U_m =$ $Q_T = 0.024 * L_T * H0$ uste $0.50 [h^{-1}]$	$L_{\psi} + L_{\gamma}$ $g + L_{\psi} + L_{\gamma}$ L_{T}/A_{B} $GT_{Standort}$	[W/K] [W/K] [W/(m ² K)] [kWh/a]	2,2 5.591,6 0,74 528.614,9 15.141,7
Leitv Tran Mittle Tran Erm Belüt Luftw	vertzusch smission erer Wärr smissio nittlun ftetes Net vechselra ohne m mas Nut mit med	läge für linienförmige und punktförmig s-Leitwert der Gebäudehülle medurchgangskoeffizient nswärmeverluste g der Lüftungswärmeverluto-Volumen des Gebäudes te n lechanische Lüftungsanlage schinell eingestellte Luftwechselrate	ge Wärmebrücken $L_T = L_e + L_u + L_y$ $U_m = Q_T = 0,024 * L_T * H0$ uste $\frac{0,50 [h^{-1}]}{0,00 [\%]}$	$L_{\psi} + L_{\gamma}$ $g + L_{\psi} + L_{\gamma}$ L_{T}/A_{B} $GT_{Standort}$	[W/K] [W/K] [W/(m ² K)] [kWh/a]	2,2 5.591,6 0,74 528.614,9 15.141,7

ArchiPHYSIK 3.68 - 12/2003 - lizensiert für Gerhild Stosch

3.6.8

Fenster Fenster West Fenster Süd Fenster Ost Fenster Nord	A _g [m ²] 695,10 15,40	f _s [-] 0,90 0,90	9 _w [-] 0,675	A _g * f _s * g _v [m ²] 422,273
Fenster Süd Fenster Ost	695,10 15,40	0,90		
Fenster Süd Fenster Ost	15,40		0,675	422,27
Fenster Ost		0.90		
TO STATE OF THE ST	Name and American	0,50	0,414	5,73
Fonctor Nord	368,90	0,90	0,414	137,45
renster Nord	23,80	0,90	0,414	8,86
Flachdach fenster	3,40	0,90	0,675	2,06
Fenster	Orientierung		lj	lj*Ag*fs*g [kWh/a]
Fenster West	OW			140.616,9
				3.224,7
				45.771,5
Fenster Nord	1 177			1.738,
Flachdach fenster	Н		544	1.123,6
negewinne $Q_s = \sum_j I_j * (\sum A_g * f_s)$, * g _w) _j		[kWh/a]	192.475,0
der internen Wärmegewinne				
estromdichte q _i			[W/m ²]	5,00
negewinne Q _i = 0,024 * q _i * HT * BGf	В		[kWh/a]	170.920,20
	Fenster West Fenster Süd Fenster Ost Fenster Nord Flachdach fenster negewinne $Q_s = \sum_{j} l_j * (\sum A_g * f_s)$ g der internen Wärmegewinne estromdichte q_i megewinne $Q_i = 0,024 * q_i * HT * BGF$	Fenster West O/W Fenster Süd S Fenster Ost O/W Fenster Nord N Flachdach fenster H megewinne $Q_s = \sum_j l_j * (\sum A_g * f_s * g_w)_j$ g der internen Wärmegewinne estromdichte q_i megewinne $Q_i = 0,024 * q_i * HT * BGF_B$	Fenster West OW Fenster Süd S Fenster Ost OW Fenster Nord N Flachdach fenster H megewinne $Q_s = \sum_j I_j * (\sum A_g * f_s * g_w)_j$ g der internen Wärmegewinne estromdichte q_i	Fenster West OW 333 Fenster Sûd S 562 Fenster Ost OW 333 Fenster Nord N 196 Flachdach fenster H 544 negewinne $Q_s = \sum_j l_j * (\sum A_g * f_s * g_w)_j$ [kWh/a] g der internen Wärmegewinne estromdichte q_i [W/m²] megewinne $Q_i = 0.024 * q_i * HT * BGF_B$ [kWh/a]

ArchiPHYSIK 3.68 - 12/2003 - lizensiert für Gerhild Stosch

3.6.8

4.6.2 Heizwärmebedarfsberechnung nach Sanierung mit S.A.M.01

Altenheim Saniert - Berechnungsergebnisse

Bruttogeschoßfläche: 7.640,00 m²
Bruttovolumen: 23.330,00 m³
Gebäudehüllfläche: 8.176,25 m²
charakteristische Länge 2,85 m
Art der Bauweise: mittelschwer
Lüftung: ohne mechanische Lüftungsanlage

Berechnungsgrundlage:

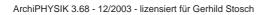
Heizwärmebedarf und Energiekennzahl nach dem OIB - Verfahren (Berechnungsleidfaden des Österr. Institutes für Bautechnik)

Jahresbilanzverfahren

Wärmebrücken wurden pauschaliert nach den Leitlinien Wohnbauförderung Wien

U-Wert der zusammengesetzten Buateile nach EN 6946

Plangrundlage: Einreichplanung


Flächenzusammenstellung: g.a.s ARCHITEKTEN Bauteilangaben zur Berechnung: g.a.s ARCHITEKTEN

BAUTEIZUSAMMENSTELLUNG

BAUTEIL / BAUTEILSCHICHTEN	d	λ U-Wert [W/m²K]
Fixverglasung West	g=0,34	1,3
Rahmenmaterial Metall		
Fenstertür West	g=0,34	1,2
Rahmenmaterial Holz		
Fenster Ost	g = 0,46	1,0
Rahmenmaterial Kunststoff		
Fenster Nord	g = 0,46	1,0
Rahmenmaterial Kunststoff		
Fenster Süd	g = 0,46	1,0
Rahmenmaterial Kunststoff		
Verglasung Wintergarten	g = 0,54	1,3
Rahmenmaterial Holz		
Verglasung Fenster EG	g = 0,54	1,2
Rahmenmaterial Holz	<u> </u>	•
Lichtkuppeln	g = 0,75	2,5
	Fixverglasung West Rahmenmaterial Metall Fenstertür West Rahmenmaterial Holz Fenster Ost Rahmenmaterial Kunststoff Fenster Nord Rahmenmaterial Kunststoff Fenster Süd Rahmenmaterial Kunststoff Verglasung Wintergarten Rahmenmaterial Holz Verglasung Fenster EG Rahmenmaterial Holz	Fixverglasung West g=0,34 Rahmenmaterial Metall Fenstertür West g=0,34 Rahmenmaterial Holz Fenster Ost g = 0,46 Rahmenmaterial Kunststoff Fenster Nord g = 0,46 Rahmenmaterial Kunststoff Fenster Süd g = 0,46 Rahmenmaterial Kunststoff Verglasung Wintergarten g = 0,54 Rahmenmaterial Holz Verglasung Fenster EG g = 0,54 Rahmenmaterial Holz

				Seite 1	
ΕN	NERGIEAUSWEIS für Wien				
	Erge	ebnisse			
Bau	vorhaben				
	Objekt: Altenheim Landeck NEU	J			
	Grundparzelle: Standort: 6500 Landeck				
	Standort: 6500 Landeck				
Geb	äudehülle				
	Fläche der wärmeabgebendenden Gebäudehülle	A _B	8.176,25	[m ²]	
	Charakteristische Länge	l _c	2,85	[m]	
Leit	werte				
	Leitwerte für Bauteile	$L_e + L_u + L_q$	2.951,71	[W/K]	
	Leitwertzuschläge für Wärmebrücken	$L_{\psi} + L_{\gamma}$	229,63	[W/K]	
	Transmissions-Leitwert der Gebäudehülle	$L_T = L_e + L_u + L_g + L_{\psi} + L_{\chi}$	3.181,35	[W/K]	
	Lüftungs-Leitwert der Gebäudehülle	L _V	2.309,67	[W/K]	
	Gesamt-Leitwert		5.491,02	[W/K]	
Spe	zifische Kennzahlen	+			
	Mittlerer Wärmedurchgangskoeffizient	$U_{m} = L_{T} / A_{B}$	0,389	[W/(m ² K)	
	Vorhandener LEK-Wert		24,05	[-]	
	Volumsbezogener Transmissions-Wärmeverlust	$P_{T,V} = L_T / V_B$	0,13	[W/(m ³ K)	
Wär	megewinne und Wärmeverluste			and the state of t	
	Transmissionswärmeverluste in der Heizwärmeperioc	de Q _T	300.752,61	[kWh/a]	
	Lüftungswärmeverluste in der Heizwärmeperiode	Q _V	218.346,96	[kWh/a]	
	Solare Wärmegewinne in der Heizwärmeperiode	Q _s	133.506,96	[kWh/a]	
	Interne Wärmegewinne in der Heizwärmeperiode	Qi	215.448,00	[kWh/a]	
- 23	Verhältnis von Wärmegewinnen zu Wärmeverlusten	1	1,48	[%]	
2		ц			
	Anforderungsklasse I				
	wärmebedarf	$= (Q_T + Q_V) - \eta * (Q_s + Q_i)$	177.123,70	[kWh/a]	

103

Seite 2

ENERGIEAUSWEIS für Wien

Beiblatt 1

Ermittlung der Transmissionswärmeverluste

Р	os	Bauteil	Fläche	U(k)-Wert	Korr. Fakt. f	A*U*f
Тур	Typ Nr.		[m ²]	[W/(m ² K)]	[-]	[W/K]
AD	FD01	Flachdach Bestand / gedämmt	1.235,00	0,12	1,00	158,08
AD	FD02	Flachdach Bestand / gedämmt EG	270,00	0,12	1,00	34,56
AD	SD02	Dach Wintergarten	68,00	0,21	1,00	14,5
ADh	SD01	Schrägdach Holz	416,00	0,21	1,00	89,02
AF	AF01	Fixverglasung Westseite	315,00	1,31	1,00	412,65
AF	AF02	Fenstertür Westseite	355,00	1,18	1,00	418,90
AF	AF03	Fenster Süd	22,00	1,00	1,00	22,00
AF	AF04	Fenster Ost	541,00	1,00	1,00	541,00
AF	AF05	Fenster Nord	34,00	1,00	1,00	34,00
AF	AF06	Verglasung Wintergarten West	85,00	1,30	1,00	110,50
AF	AF07	Verglasung Fenster West EG	166,00	1,20	1,00	199,20
AW	AW02	Aussenwand OST Bestand gedämmt	1.248,00	0,20	1,00	258,33
AW	AW04	Aussenwand Stiegenhaus Sichtbeton	66,00	0,50	1,00	33,33
AW	AW06	Laibung Stockverbreiterung	64,00	0,49	1,00	31,74
ΑWh	AW01	Aussenwand Süd Schoten	224,00	0,21	1,00	48,38
ΑWh	AW01	Aussenwand Süd Schoten EG	530,00	0,21	1,00	114,48
ΑWh	AW03	Aussenwand Parapeth	274,00	0,19	1,00	53,97
DD	DD 01	Decke nach aussen	185,00	0,21	1,00	40,51
DF	AF08	Flachdach fenster	4,00	2,50	1,00	10,00
		Bauteile gegen Aussenluft, unbeheizte G nläge für linienförmige und punktförmige \		L _ψ + L _γ	[W/K]	2.951,71
Trans	smission	s-Leitwert der Gebäudehülle	$L_T = L_e + L_u + L_u$	$g + L_{\psi} + L_{\chi}$	[W/K]	3.181,35
Mittle	erer Wärr	medurchgangskoeffizient	U _m	=L _T /A _B	[W/(m ² K)]	0,389
Tran	smissio	nswärmeverluste	Q _T = 0,024 * L _T * H	Q _T = 0,024 * L _T * HGT _{Standort}		
(10.55%)		nswärmeverluste g der Lüftungswärmeverlus	Q _T = 0,024 * L _T * H	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		300.75
_		tto-Volumen des Gebäudes		V_N	[m ³]	17.497,
Luftv	vechselra	ate n				
		7 7 7 7 7 7 7			1.	0.4
	ohne m	nechanische Lüftungsanlage			[h-']	0,4
		schinell eingestellte Luftwechselrate	0,40 [h ⁻¹]		[h-']	0,40
	mas		and deep the state of		[h-']	0,4
	Mas	schinell eingestellte Luftwechselrate	and deep the state of			0,4
	Nut mit me	schinell eingestellte Luftwechselrate	0,00 [%]		[h ⁻¹]	2.309,67

ArchiPHYSIK 3.68 - 12/2003 - lizensiert für Gerhild Stosch

3.6.8

						Seite 3
ΕN	NER	GIEAUSWEIS für Wie	en		ı	Beiblatt 2
Ern	nittlun	g der solaren Wärmegewinne				
Po	s	Fenster	Ag	f_s	g _w	Ag * fs * g
Тур	Typ Nr.		[m ²]	[-]	[-]	[m ²]
AF	AF01	Fixverglasung Westseite	286,65	0,90	0,306	78,94
AF	AF02	Fenstertür Westseite	291,10	0,90	0,306	80,16
AF	AF03	Fenster Süd	15,40	0,90	0,414	5,73
AF	AF04	Fenster Ost	378,70	0,90	0,414	141,10
AF	AF05	Fenster Nord	23,80	0,90	0,414	8,86
AF	AF06	Verglasung Wintergarten West	72,25	0,90	0,486	31,60
AF	AF07	Verglasung Fenster West EG	116,20	0,90	0,486	50,82
DF	AF08	Flachdach fenster	3,40	0,90	0,675	2,06
Do		Foundation	Orientia	nung.	l _j	li*Aa*fe*a
Po	1	Fenster	Offentie	Orientierung		lj*Ag*fs*g [kWh/a]
Typ AF	Typ Nr. AF01	Fixverglasung Westseite	OW		[kWh/(m ² a)]	26.288,
AF	AF02	Fenstertür Westseite	OW		333	26.696,2
AF	AF03	Fenster Süd	S		562	3.224,7
AF	AF04	Fenster Ost	OW		333	46.987,5
AF	AF05	Fenster Nord	N		196	1.738,
AF	AF06	Verglasung Wintergarten West	OW		333	10.523,
AF	AF07	Verglasung Fenster West EG	OW		333	16.925,0
DF	AF08	Flachdach fenster	Н		544	1.123,6
Sola	are Wärı	megewinne $Q_s = \sum_i I_j * (\sum_i)$	$A_g * f_s * g_w)_j$		[kWh/a]	133.506,9
Ern	nittlung	g der internen Wärmegewinne	Ψ,			
Mittle	ere Wärm	estromdichte q _i			[W/m ²]	5,0
Inte	rne Wär	megewinne $Q_i = 0.024 * q_i * HT$	T*BGF _B		[kWh/a]	215.448,0
Ern	nittlung	g des Ausnutzungsgrades für d		e	31000031101333	
	nutzun	gsgrad η			[-]	0,9

ArchiPHYSIK 3.68 - 12/2003 - lizensiert für Gerhild Stosch

3.6.8

4.6.3 Ergebnisdarstellung

Zusammenstellung der Ergebnisse

	Altenheim Landeck Teilsaniert	Altenheim Landeck Sanierung	Einsparung	
Qs	192.475	133.507		kWh/a
Qi	170.920			kWh/a
QT	528.615	300.753		kWh/a
QV	236.187	218.347		kWh/a
Q	401.407	177.124	224.283	kWh/a
EKZ	66,22	23,18	43,04	kWh/m²a
	100%	35%	65%	

Bruttogeschossfläche Bestand: 5665 m²

Neu: 979 m²

Derzeitiger Energiebedarf: ca. 90.000 | Heizöl extraleicht/

Jahr

Erwartete Reduktion durch die Revitalisierung mit S.A.M. 55.000 I

• Wechselwirkung & Vernetzung von Energiesystemen

Die Optimierung passiver Solargewinne (Westfassade) und die Nutzung der vorhandenen Speichermassen (Stahlbetonkonstruktion) lässt Einsparungen an Heizenergie bis zu 65% bei einer deutlichen Verbesserung der Behaglichkeit erwarten.

4.7 Sommerliche Überhitzung

Ermittlung der immissionsflächenbezogenen speicherwirksamen Masse (ÖN B 8110/3 1999) DI Gerhild Stosch

4.7.1 Fall 1 ohne Verschattung

		Vermeidung				her		rwär	mung	Seite	2. 1.
	Е	rmittlung der immissio						nerwirk	samen l	Masse	
Auftrag	enheim ggeber	Landeck Speichermassen				s a	&w en echn. B r. Andre	Unterlagen ergiec üro für M as Wimn gel 45/7,	aschinen ner	bau	
	ezeichnu mer 11	^{ng} 1 ohne Verschattung						F	Raum Nr. 111	/OG2	
lmmi	ssions	fläche									
Fens	sterfläche	gegeben durch die	e Archit	ekturlich	nte		1	AL		5,20	[m ²]
lmmi	issionsflä	ache $A_I = A_{AL} \cdot f_{G} \cdot g \cdot z$	bzw.	$A_{\parallel} = A$	AL · fg ·	g · Z _{ON}		41		1,74	[m ²]
Speid	cherwir	ksame Masse, immissionst	läche	nbezo	gen						
Gesa	amte spe	eicherwirksame Masse					r	n _w		10.475	[kg]
Immi	issionsflä	ichenbezogene speicherwirksam	e Mass	е				n _{w,1}		6.020,5	[kg/m ²
Baute	eilliste	und Berechnung									
Bau			Immissionsfläche Flä		Immissionsfläche Fläche		Fläche	Speich	tran		
Тур	Nr.	Bezeichnung	Orient.	Neig.	Z _{ON}	g-Wert	z-Wert		Perio	de 24h	
				[°]	[-]	[-]	[-]	$[m^2]$	[kg/m ²]	[kg]	
AF	AF01	Fixverglasung Westseite	W	0	1,13	0,34	1,00	2,80		22,48	V
AF	AF02	Fenstertür Westseite	W	0	1,13	0,34	1,00	2,40		19,27	V
ADh	SD01	Schrägdach QU Dämmung		0				7,30	47,82	349,16	
AWh	AW03	Aussenwand Parapeth QU Ste		0				2,00	43,00	86,00	
IW	IW 01	Innenwand Neu 1		0				13,40	22,96	307,80	
IW	IW 02	Innenwand Neu 2		0				5,30	21,40	113,47	
IVV	IW 03	Innenwand Stahlbeton		0				18,70	234,94	4.392,63	3
IW	IW 04	Innenwand Mauerwerk		0				8,00	89,84	718,40	
WD	WD01	Decke Bestand		0				16,10	102,15	3.577,42	2 🗖
		Summe der Bauteilflächen						76,00			
		Summe der transp. Bauteilfläche	en					5,20			
Einr	ichtung	g / Ausstattung				ar Nessan		22.40	20.00	200	
		Möbel						23,40	38,00	889,2	U
Gesa	amte s	peicherwirksame Masse				n	$n_w = \sum m$	_{w,B} + m _w	/,E	10.475	[kg]
lmm	issions	sflächenbezogene speicher	wirksa	ame M	asse	m	n _{w,l} = m	w / A ı		6.020,59	ſka/m²

ArchiPHYSIK 3.68 - 12/2003 - lizensiert für Gerhild Stosch

3.6.8

Vermeidung sommerlicher Überwärmung ÖNORM B 8110, Teil 3 1999

Ermittlung der mindesterforderlichen speicherwirksamen Masse

Objekt

Altenheim Landeck Speichermassen

Auftraggeber

g.a.s.ARCHITEKTEN

s&w energieconsulting Techn. Büro für Maschinenbau Dr. Andreas Wimmer

Hafnerriegel 45/7, 8010 Graz

Raumbezeichnung

Zimmer 111 ohne Verschattung

Raum Nr.

111 /OG2

2

Seite

Nachweisführung						
Fußbodenoberfläche			23,40	[m ²]		
Fensterfläche	gegeben durch die Architekturlichte A _{AL}					
Anteil der Fensterfläche an der Fußboder	noberfläche		22,22	[%]		
Fensteranteil	>15 %	Nachweis erforderl	Nachweis orforderlich			
Fenster nur in vertikalen Auße	nwänden 🗹	- INdeliweis cholden	s erforderlich			

Speicherwirksame Masse immissionsflächenbezogen	Delivery of the control of the contr	vorhanden	6.020,5	[kg/m ²]
		erforderlich >=	7.931,2	[kg/m ²]

Stündlicher Luftvolume	nstrom			
Netto-Raumvolumen		V	58,50	[m ³]
Immissionsfläche	$A_I = A_{AL} \cdot f_{G} \cdot g \cdot z$ bzw.	$A_I = A_{AL} \cdot f_G \cdot g \cdot Z_{ON} \cdot z$	1,74	[m ²]
Anzahl der Fassaden-/Dach	nebenen mit Lüftungsöffnungen (nur l	bei Norm 1999)	1	
Luftwechselzahl		n _L	1,50	[1/h]
lmmissionsflächenbezoge	ener stündl. Luftvolumenstrom	$V_{L,s} = n_L^* V / \Sigma A_L$	50,43	[m ³ /h m ²

Mindesterforderliche immissionsflächenbezogene speich in Abhängigkeit von der Fensterorientierung und dem stündl. Luftvolum			
Immissionsflächenbezogener stündl. Luftvolumenstrom	vorhanden	50,43	[m ³ /h m ²]
Immissionsflächenbezogene speicherwirksame Masse	erforderlich	7.931,2	[kg/m ²]

Anmerkung: Immissionsbezogene Luftvolumenströme von weniger als 50 m3/(h m2) führen zu einem hohen Überwärmungsrisiko und sind daher grundsätzlich zu vermeiden.

Zur Ermöglichung der erforderlichen Tag- und Nachtlüftung (nach Möglichkeit Querlüftung) sind entsprechende Voraussetzungen für eine erhöhte natürliche Belüftung, wie öffenbare Fenster, erforderlichenfalls schalldämmende Lüftungseinrichtungen u. dgl. vorzusehen.

Die Möglichkeit einer nächtlichen Dauerlüftung ist unter Beachtung notwendiger Sicherheitserfordernisse (gegen Sturm, Einbruch u. dgl.) vorzusehen. Tagsüber ist zumindest der hygienisch erforderliche Luftwechsel (mindesterforderliche Luftwechselzahl = 0,5) sicherzustellen.

ArchiPHYSIK 3.68 - 12/2003 - lizensiert für Gerhild Stosch

3.6.8

4.7.2 Variante mit hellem reflektierendem Vorhang

		Vermeidung						rwär	mung	Seite	3
	Е	rmittlung der immissio				, Teil 3 genen		nerwirks	samen I	lasse	
Auftrag	geber	Landeck Speichermassen				s o	&w en echn. B	üro für Mas Wimn	onsulti aschinen ner 8010 Gra	oau	
	ezeichnu mer 11	^{ng} 1 mit hellen Innenvorhänge	en					70 8	Raum Nr.	/OG2	
lmmis	ssions	fläche									
Fens	terfläche	gegeben durch die	e Archit	ekturlicl	hte		A	AL		5,20	[m ²]
Immi	ssionsflä	iche $A_I = A_{AL} \cdot f_G \cdot g \cdot z$	bzw.	$A_1 = A$	AL · fg	g · Z _{ON}	z A	A ₁		1,30	[m ²]
Speic	herwir	ksame Masse, immissions	fläche	nbezo	gen						
		eicherwirksame Masse					n	n _w		10,477	[kg]
Immis	ssionsflä	ichenbezogene speicherwirksam	e Mass	е				n _{w,i}		8.059,3	[kg/m ²
Baute	illiste	und Berechnung									
Baut	eile	341, 34 (10 - 3 - 10 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 -	Immissionsfläche Flä		Fläche	Speich	ermasse	tran			
Тур	Nr.	Bezeichnung	Orient.	Neig.	Z _{ON}	g-Wert	z-Wert		Perio	de 24h	
				[°]	[-]	[-]	[-]	[m ²]	[kg/m ²]	[kg]	
AF	AF01	Fixverglasung Westseite	W	0	1,13	0,34	0,75	2,80		22,48	V
AF	AF02	Fenstertür Westseite	W	0	1,13	0,34	0,75	2,40		19,27	V
ADh	SD01	Schrägdach QU Dämmung		0				7,30	47,82	349,16	
AWh	AW03	Aussenwand Parapeth QU Ste		0				2,00	43,00	86,00	
IW	IW 01	Innenwand Neu 1		0				13,40	22,96	307,80	П
IW	IW 02	Innenwand Neu 2		0				5,30	21,40	113,47	П
IW	IW 03	Innenwand Stahlbeton		0				18,70	234,94	4.393,57	
IW	IW 04	Innenwand Mauerwerk		0				8,00	89,84	718,80	П
WD	WD01	Decke Bestand		0				16,10	102,15	3.577,42	
		Summe der Bauteilflächen						76,00			
		Summe der transp. Bauteilfläche	en					5,20			
Einri	chtung	g / Ausstattung									
		Möbel						23,40	38,00	889,2	0
Gesa	amte s	oeicherwirksame Masse				m	$n_w = \sum m$	_{w,B} + m _w	,E	10.477	[kg]

ArchiPHYSIK 3.68 - 12/2003 - lizensiert für Gerhild Stosch

3.6.8

Vermeidung sommerlicher Überwärmung ÖNORM B 8110, Teil 3 1999

Seite

4

Ermittlung der mindesterforderlichen speicherwirksamen Masse

Altenheim Landeck Speichermassen

Auftraggeber

g.a.s.ARCHITEKTEN

s&w energieconsulting Techn. Büro für Maschinenbau Dr. Andreas Wimmer

Hafnerriegel 45/7, 8010 Graz

Raum Nr. Raumbezeichnung

Zimmer 111 mit hellen Innenvorhängen

111 /OG2

Nachweisführung					
Fußbodenoberfläche				23,40	[m ²]
Fensterfläche	ichte A _{AL}	5,20	[m ²]		
Anteil der Fensterfläche an der Fußbo	denoberfläche			22,22	[%]
Fensteranteil		>15 %	Nachweis erforderlich		
Fenster nur in vertikalen Au	ıßenwänden	A			

Speicherwirksame Masse immissionsflächenbezogen	$m_{w_{i}l}$	vorhanden	8.059,3	[kg/m ²]
		erforderlich >=	5.200,0	[kg/m ²]

Stündlicher Luftvolumer	nstrom			
Netto-Raumvolumen		V	58,50	[m ³]
Immissionsfläche	$A_I = A_{AL} \cdot f_{G} \cdot g \cdot z$ bzw.	$A_I = A_{AL} \cdot f_G \cdot g \cdot Z_{ON} \cdot z$	1,30	[m ²]
Anzahl der Fassaden-/Dach	ebenen mit Lüftungsöffnungen (nur b	ei Norm 1999)	1	
Luftwechselzahl		n _L	1,50	[1/h]
Immissionsflächenbezoge	ener stündl. Luftvolumenstrom	$V_{L,s} = n_L^* V / \Sigma A_I$	67,50	[m ³ /h m ²

Mindesterforderliche immissionsflächenbezogene speich in Abhängigkeit von der Fensterorientierung und dem stündl. Luftvolum			
Immissionsflächenbezogener stündl. Luftvolumenstrom	vorhanden	67,50	[m ³ /h m ²]
Immissionsflächenbezogene speicherwirksame Masse	erforderlich	5.200,0	[kg/m ²]

Anmerkung: Immissionsbezogene Luftvolumenströme von weniger als 50 m3/(h m2) führen zu einem hohen Überwärmungsrisiko und sind daher grundsätzlich zu vermeiden.

Zur Ermöglichung der erforderlichen Tag- und Nachtlüftung (nach Möglichkeit Querlüftung) sind entsprechende Voraussetzungen für eine erhöhte natürliche Belüftung, wie öffenbare Fenster, erforderlichenfalls schalldämmende Lüftungseinrichtungen u. dgl. vorzusehen.

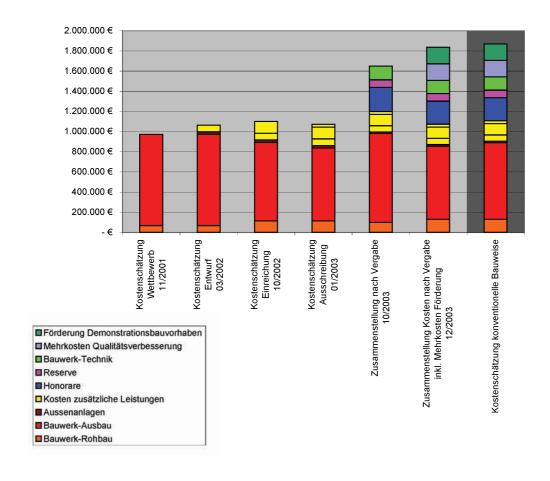
Die Möglichkeit einer nächtlichen Dauerlüftung ist unter Beachtung notwendiger Sicherheitserfordernisse (gegen Sturm, Einbruch u. dgl.) vorzusehen. Tagsüber ist zumindest der hygienisch erforderliche Luftwechsel (mindesterforderliche Luftwechselzahl = 0,5) sicherzustellen.

ArchiPHYSIK 3.68 - 12/2003 - lizensiert für Gerhild Stosch

3.6.8

Das Ergebnis der Berechnungen zeigt, dass eine sommerliche Überwärmung bereits bei einem hellen Vorhang nicht zu erwarten ist. Der Bauherr wünschte jedoch in Bezug auf den Bedienungskomfort und das erhöhte Risiko bei älteren und kranken Menschen einen außenliegenden Sonnenschutz der zentral gesteuert ist und individuell überregelt werden kann. Es wäre auch möglich gewesen durch Änderung einiger Parameter wie z.B. Fenstergröße oder Glasqualität den außenliegenden Sonnenschutz gänzlich wegzulassen. Die Tönung des Glases und die Helligkeit im Zimmer waren wichtige Aspekte bei der Auswahl der Verglasung, da viele der Pflegepatienten die meiste Zeit in ihrem Zimmer verbringen müssen und deshalb sowohl Intensität als auch Farbigkeit des Tageslichts möglichst wenig verändert werden sollen.

4.8 Kostenverfolgung


Die folgenden Tabellen und Diagramme zeigen die Entwicklung der Baukosten vom Beginn des Projektes bis zum Baubeginn sowie einen Vergleich mit den Kosten für eine konventionelle Bauausführung (ohne Ausweichquartier), die aktuelle Kostensituation nach Vergabe aller Gewerke und die Mehrkosten für Verbesserungen im Sinne der Nachhaltigkeit.

4.8.1 Kostenentwicklung

Das Diagramm "Kostenentwicklung" zeigt, dass die Ausbaukosten bis zur Ausschreibung leicht sinkend eingeschätzt wurden. Die Sonderwünsche des Bauherrn sind als zusätzliche Leistungen ausgewiesen. Die Kosten nach Vergabe beinhalten einen Anteil der Mehrkosten, deshalb ist die Summe Ausbaukosten in der Spalte nach Vergabe höher. Die Kosten für Technik und Honorare kamen erst bei der Vergabe zur Schätzung, da die Sonderplaner erst sehr spät im Projektverlauf beauftragt wurden.

Die letzte Spalte des Diagramms zeigt schließlich die Höhe der Schätzkosten für eine konventionelle Bauausführung, die den Kosten für S.A.M. in etwa gleichkommen. Dabei ist der Rohbauanteil entsprechend höher, Kosten für Übersiedlung und Ausweichquartier sind nicht berücksichtigt.

Tabelle Kostenentwicklung:

4.8.2 Baukosten

Die Tabelle "Baukosten ohne Mehrkosten" stellt den aktuellen Kostenstand nach Vergabe aller Gewerke dar. Die Verteilung zeigt deutlich den Hauptanteil der Kosten bei den Ausbaukosten, da hier auch die Holzkonstruktion und die Verglasungen eingerechnet sind.

Tabelle Baukosten ohne Mehrkosten:

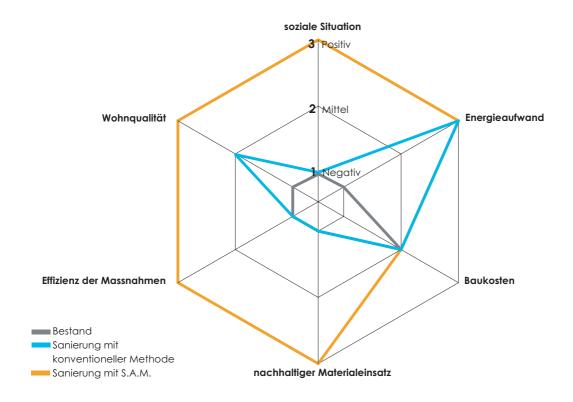
					30.12.2003
(OSTEN ohne Mehrkosten					
n ÖN B1801-1	Dea		C		Firms a re
1 AUFSCHLIESSUNG	Pre	·IS	Summer		in Punkt 2 enthalten
1 AUTSCRIESSUNG			E	-	III FOI KI 2 eminalen
2 BAUWERK-ROHBAU			€	129.107	
Baumeister	€	129.107		127.1107	Fröschl
3 BAUWERK-TECHNIK	Ì	127.107	€	130.829	
Erweiterung und Änderung Heizungsinstallation	€	42.829	-		Stockhammer
Erweiterung und Änderung Elektroinstallation	€	88.000			Bauer
4 BAUWERK-AUSBAU			€	928.092	
Dach & Fass.	€	500.065			Vorhofer
Fass. & Winterg.	€	237.783			Huter & Söhne
Trockenbau	€	48.034			Winkler
Bodenleger	€	80.509			Seb. Gitterle
Maler	€	20.130			Jais
Sonnenschutz	€	41.571			Jais
5 EINRICHTUNG					
6 AUSSENANLAGEN			€	15.800	Fröschl
7 HONORARE			€	199.500	
Planung/Bauleitung	€	180.000			Sandbichler & Gharakhanzade
Statik	€	4.000			Pesjak
Vermessung	€	5.000			Pfeifer
HLS-Planung	€	6.000			Nötzold
Elektroplanung	€	4.500			Bombardelli
8 NEBENKOSTEN			€	29.000	
Planung	€	8.000			
Erschliessung	€	21.000			
9 RESERVE			€	75.000	
SUMME ERRICHTUNGSKOSTEN netto			€	1.507.328	
			€	1.808.794	

4.8.3 Mehrkosten

Die Tabelle "Mehrkosten Demonstrationsbauvorhaben" stellt Kosten dar, die als Ausschreibungsvarianten für eine Verbesserung des Projektes im Sinne der Nachhaltigkeit stehen. Die einzelnen Positionen beziehen sich auf Verbesserungen in den Bereichen Energie, Bautechnik, Gebäudetechnik, Funktion, Sicherheit, Komfort und Gestaltung.

Tabelle Mehrkosten Demonstrationsbauvorhaben:

Maßnahme	Kost	en	Firma	erzielbarer Effekt der Maßnahme
nergieeinsparung/Bauphysik				
Mehrstärke Wärmedämmung Dach und Wand	€	4.800	Vorhofer	Heizkosteneinsparung, Verbesserung Energiekennzahl
Mehrpreis für Glas mit U-wert 0,9W/m²K	€	12.341		höhere Behaglichkeit, Heizkosteneinsparung
Mehrpreis Dämmstärke Eternitfassade	€		Huter&Söhne	Heizkosteneinsparung, Verbesserung Energiekennzahl
Unterkonstruktion Kupferblechfassade mit Alutrapezblec			Vorhofer	Verbesserung Hinterlüftung, wartungsfreies System, geringere Ver
esamteffizienz/Bautechnik				
Kreuzleimholz Deckenelemente	€	12.375	Vorhofer	Einsatz nachwachsender Rohstoffe, qualitative Leichtkonstruktion
Mehrpreis Fassadendetails in Kupferblech vorpatiniert	€	15.800	Vorhofer	Verbesserung Witterungsschutz, wartungsfreies System, Fassaden
Mehrpreis SG-Systemverglasungen	€		Vorhofer	fassadenbündiges System, wartungsfrei, Intensiver Bezug zum Au
Mehrpreis 2-farbige Lackierung Fensterflügel	€		Vorhofer	Verbesserung Witterungsschutz, Naturholzansicht innen, Raumge
Mehrpreis Eternight geklebt	€		Huter&Söhne	Verbesserung Witterungsschutz, einheitliche Fassadengestaltung
Fassade und Verglasung UG	€		Huter&Söhne	Verbesserung Witterungsschutz, einheitliche Fassadengestaltung
Mehrpreis SG-Verglasung Wintergärten EG	€		Huter&Söhne	Verbesserung Witterungsschutz, einheitliche Fassadengestaltung
Mehrpreis 2-fache Beplankung Gipskarton, Tel-Distanzbo			Gitterle, Winkler	bessere Schalldämmung, weniger Rissbildung, Zeiteinsparung
windgetriebene Entlüfter Dachraum	€	1.800		bauphysikalische Verbesserung, gegen sommerliche Überhitzung
	€			
Probedurchlauf Montage zyklus	€	6.500	Alle beteiligten Firmen	n Testlauf zur Erkennung von Fehlerquellen, Kontrolle der Zeitplanur
novative Gebäudetechnik				
Instabloc für Heizungsleitung	€		Stockhammer	Erleichterung Hygiene, keine Fussbodendurchdringungen
Werkseitige Vorinstallation Elektroleitungen	€	1.800	Bauer	Vorfertigung zur Bauzeiteinsparung
zentrale und individuelle Steuerung Sonnenschutz	€	7.463	Jais	Schutz vor sommerlicher Überhitzung, individuelle Steuerungsmög
utzungsgewinn/Funktion				
Überdachung Haupteingang	€	21.472	Huter&Söhne	
Wintergarten OG4	€	29.200	Huter&Söhne	Raumgewinn für das Personal, Abstellraum wird Gemeinschaftsw
Beschattung EG Bürobereiche	€	5.526	Jais	Schutz vor sommerlicher Überhitzung, Sichtschutz
cherheit/Komfort				
Temporäre Schutzvorkehrungen	€	7.950	Vorhofer	erleichtern Bauablauf und senken Kosten für Reinigung und Umz
Absturzsicherungshaken	€	4.050	Vorhofer	sichere Reinigung der Fixverglasung von den Dachflächen
Brandschutzgeländer G30	€	14.805	Vorhofer	Erfüllung der Vorschriften ohne Einbusse von Ausblick
begehbare Rinne EG	€	8.215	Huter&Söhne	behindertengerechter Ausgang zum Park, Schutz vor Überflutung
Lüftungselemente Wintergarten	€	2.568	Huter&Söhne	zusätzlicher Schutz vor sommerlicher Überhitzung
estaltung				
Ausführung Innenansicht Elemente in Naturholz	€	11.630	Vorhofer	Identifikation, nachwachsender Rohstoff, Wartungsfreiheit
Vorhangstangen OG1 -3	€	7.500	Vorhofer	Möglichkeit für individuelle Gestaltung, Mittel zur Identifikation
Fensterbrett/Rahmen im EG	€	15.604	Huter&Söhne	einheitliche Architektur aller Öffnungen
integrierte Kunst am Bau	€	33.000	Peter Sandbichler	soziale Aussage, Entre zum Areal, Platzgestaltung, Städtebaulich
Gesamt netto	€	314.600		
Gesamt netto	€ .	314.600		
ehrleistung intensivierte Baubetreuung				
Qualitätsmonitoring	€	3.200	-	nachvollziehbare Erfassung aller Prozesse
Zeitmanagement	€	4.300	örtliche Bauleitung	flexible Steuerung des zeitlichen Ablaufes und Dokumentation
Controlling	€	2.600	-	genaue Erfassung aller kostenrelevanten Abläufe und Daten
Nutzwertberechnung	€	1.800	Stadtgemeinde, Hand	Kosten/Nutzenrechnung, Amortisationsdauer
Workshop Mitarbeiter/Bewohner	€	1.500	Stadtgemeinde, Hand	Vorbereitung auf Umbausituation, Vorstellung des Projektes
Gesamt netto	€	13.400		
ENDSUMME netto	€	328.000		



5. ERGEBNISSE

5.1 Grafische Auswertung

5.2 Allgemeines

Die Demonstration der Ergebnisse der Untersuchung über "Revitalisierung mit Synergie Aktivierenden Modulen ohne Nutzungsunterbrechung" ist geeignet, einen überregionalen Impuls für Sanierungsprojekte vor allem bei Alten- und Pflegeheimen, Schüler- und Studentenheimen und dezentralen Krankenhäusern etc. zu setzen und neue Wege einer nachhaltigen Vorgangsweise aufzuzeigen. Der Bedarf an Sanierungen dieser Art ist stark steigend, ebenso der Bedarf an Pflegeplätzen, Schüler- und Studentenwohnungen (in Folge z.B. der Fachhochschulen) und auch Krankenbetten.

Das erarbeitete Projekt ist in seinen Grundzügen übertragbar und bietet die Möglichkeit notwendige Erneuerungen an Altbauten in kompromissloser technischer, funktioneller und gestalterischer Sicht ohne Betriebsunterbrechung durchzuführen. Die Verwendung energieeffizienter ökologischer Materialien, die Adaptierung an geänderte Bedürfnisse, die Implementierung neuer Technologien sowie die Schaffung zusätzlicher Lebensräume in zeitgemäßer Qualität sichert gleichzeitig die Erhaltung der Qualitäten bestehender Gebäude unter Aufhebung ihrer technologisch bedingten Nachteile.

Die Lage des Projektes in einer strukturschwachen Gegend ist ein zusätzliches Argument, da einseitig ausgelastete lokale Betriebe die Möglichkeit erhalten, sich mit dem erworbenen neuen Wissen einen Wettbewerbsvorteil zu verschaffen.

5.3 Erneuerbare Energie

Der Projektumfang war ursprünglich nur auf einen Gebäudeteil bezogen (Westfassade). Diese Situation und die daraus entstehenden Konsequenzen entsprechen häufig der Sanierungsrealität. Der Auftraggeber war aber bereit, darüber hinaus weitere Problembereiche in Angriff zu nehmen (Innenraumgestaltung Erdgeschoss, Gemeinschaftsbereiche). Weitere Überlegungen sind in Bezug auf die neu installierte, durch die Sanierung in Zukunft wesentlich überdimensionierte Heizenergieversorgung anzustellen Ebenso soll die Sinnhaftigkeit einer Abwasserwärmerückgewinnung mittels Wärmetauscher geprüft werden (Contracting für erneuerbare Energie).

Der Einsatz von fassadenintegrierten Sonnenkollektoren wurde geprüft, scheiterte jedoch an den hohen Investitionskosten und dem vorhandenen Überangebot an Heizenergie.

Ein nächster Schritt in der umfassenden Betrachtung der Aufgabe ist für die Antragsteller die Prüfung eines Umstieges auf nachwachsende Energieträger für Heizung und Solarenergie für Warmwasserbereitung ev. mit einem Contracting Partner. Eine Entscheidung darüber ist noch offen.

5.4 Energieeffizienz / Lebenszyklus

Die hoch wärmegedämmten Wand- und Dachelemente in Verbindung mit innovativen rahmenlosen Fixverglasungen führen zur Optimierung passiver Solargewinne (Westfassade). In Verbindung mit der Nutzung der vorhandenen Speichermassen (Stahlbetonkonstruktion) sind wesentliche Einsparungen an Heizenergie bei einer deutlichen Verbesserung der Behaglichkeit zu erwarten. Die Einsparungen an Heizenergie können jährlich bis zu 65% betragen.

Die breiten in hellem reflektierendem Material ausgeführten Fensterbretter lenken Tageslicht in die Raumtiefe und senken den Bedarf an künstlicher Beleuchtung. Der außen liegende Sonnenschutz (Transparentrollos) ist neben dem Sonnenschutzglas (Isopal natura) ein wirksamer Schutz vor sommerlicher Überhitzung.

Der Grossteil der eingesetzten Materialien ist in allen Bereichen von der Erzeugung bis zur Wiederverwendung in Bezug auf Energieaufwand und Schadstoffemmission positiv bewertet. Kunststoffe und Materialien die nichtrecyclebar sind oder Metalle die hohe Primärenergie zur Herstellung erfordern kommen in kleinen Mengen nur dort zum Einsatz wo sie einen speziellen Zweck mit großer Effizienz erfüllen, oder kein anderes Material geeignet ist.

Es findet aber vor allem ein Einsatz von nachwachsenden Rohstoffen – heimischem Bauholz, zur Vermeidung von Transporten – statt. Weitestgehender konstruktiver Holzschutz erübrigt den Einsatz von chemischen Holzschutzmitteln.

Sämtliche Materialien sind im Werk trocken vormontiert oder werden auf der Baustelle trocken eingebaut und können wieder einfach getrennt und einem eventuellen Recycling oder einer Wiederverwendung zugeführt werden.

Sämtliche der Witterung ausgesetzten Materialien sind wartungsfrei, das heißt Anstriche etc. sind weitestgehend vermieden.

5.5 Nachwachsende Rohstoffe / Bauökologie

Es erfolgt ein weitestgehender Einsatz von vorgefertigten Elementen in Holzkonstruktion bei Wand, Decke und Dach. Die Fassadenverkleidung und Dachdeckung ist aus vorpatiniertem Kupferblech. Die Verglasungen werden entweder fassadenbündig, fix und rahmenlos, oder öffenbar mit Holzrahmen in Fichte ausgeführt. Die Holzfenster sind witterungsgeschützt in Nischen angeordnet um den Wartungsaufwand zu minimieren (konstruktiver Holzschutz). Anstatt üblicher Estriche kommen Trockenestrichsysteme mit Holzwerkstoff- (nachwachsender Rohstoff) oder Calciumsulphatplatten (Recyclingmaterial) zum Einsatz. Die Fußbodenbeläge werden entsprechend dem Bestand in Holz bzw. Linoleum ausgeführt. Wandverkleidungen erfolgen in Gipskarton, bzw. Fichtedreischichtplatten mit wasserlöslichen Anstrichen bzw. Mineralfarben.

5.6 Service und Nutzeraspekte

Derzeitige Nutzung des Gebäudes: Altenheim, zukünftige Nutzung des Gebäudes: Pflegeheim

Das mit verhältnismäßig geringen Kostenaufwand revitalisierte Gebäude (siehePkt. 4.8.1 Kostenvergleich), bringt eine deutliche Verbesserung der Lebensqualität für Bewohner und Personal. Obwohl nur ein Umbau erhält das Gebäude eine neue unverwechselbare Gestalt und nimmt durch die sachliche aber nicht unterkühlte Architektur und mittels eines großflächigen Kunst am Bau Projektes auf verschiedenen Ebenen den Dialog mit der Umgebung auf. Es soll ein neuer Platz und ein Ensemble aus Kirche, Pfarrhof und Altenheim entstehen.

Die Planung erfolgte unter intensiver Beteiligung der Nutzer und zeigt einen nachvollziehbaren Entscheidungsweg auf (siehe Pkt. 4.5.3 Planungsgeschichte). Die Flexibilität der Nutzung der halböffentlichen Zone im Erdgeschoss und deren Öffnung zum Park geben Anlass zur Hoffnung, dass ein neues Stadtteilzentrum für alle Altersgruppen entsteht und das Heim in das öffentliche Leben stark eingebunden wird.

Die Innenansicht der Fassadenelemente wird mit Bezug auf die lokalen Traditionen der Bewohner in Naturholzverkleidung ausgeführt und bietet zusätzlich die Möglichkeit sich über die selbst mitgebrachten Vorhänge und Möbel ein vertrautes individuelles Umfeld zu gestalten.

Es werden zur Bauvorbereitung Workshops mit Betreibern und Nutzern veranstaltet. Die

រកាកាក

Betreuerinnen und Bewohnerinnen der Anlage sollen auf energietechnische Aspekte der Nutzung aufmerksam gemacht werden.

Die Materialisierung und Detaillierung der Außenhaut aus Kupfer und Glas wurde in Hinblick auf weitestgehende Wartungsfreiheit und daraus folgend geringe Erhaltungskosten entwickelt.

Der Bauablauf (siehe Pkt. 4.5.2) wurde in intensiver Zusammenarbeit aller beteiligten Planer, Betreiber, Nutzer und Ausführender unter Berücksichtigung der optimalen Abläufe, der technischen Durchführbarkeit und der kleinstmöglichen Störung des laufenden Betriebes entwickelt. Auch viele weitere Detaillösungen wurden gemeinsam mit dem Nutzer und den Ausführenden entwickelt.

Da fertig gestellte Einheiten bereits während des Bauvorganges bewohnt werden, besteht die Möglichkeit auftauchende Mängel und Schäden durch die noch am Bau arbeitenden Firmen sofort beseitigen zu lassen.

5.7 Vergleichbare Kosten

Das Grundkonzept von S.A.M. zielt auf mit der derzeit üblichen konventionellen Baupraxis vergleichbare Kosten ab, das Demonstrationsbauvorhaben S.A.M. 01 soll auch den Nachweis führen, dass die investitionskosten bei konsequenter Anwendung aller Parameter sogar unter dem Aufwand für konventionelle Sanierungsmethoden liegt! Darüber hinaus gibt es aber einen tatsächlichen Gewinn an Nutzfläche, Komfort und der gesamten Nutzungsdauer des Gebäudes der ebenfalls in Rechnung gestellt werden kann.

Die eingesetzten innovativen Konstruktionsweisen erhöhen die Baukosten gegenüber einer konventionellen Bauweise nicht. Der hohe Grad an Vorfertigung verkürzt die Bauzeit um ein wesentliches und trägt so zu allen weiteren Einsparungen entscheidend bei. Die Auslastung der Firmen durch Vorfertigung in auftragsschwachen Zeiten (Winterarbeit) garantiert günstige Angebotspreise und stellt einen Impuls für eine nachhaltig orientierte Bauwirtschaft dar (regionale Unternehmen).

Es fallen keine Kosten für ein Ausweichquartier und eine zweimalige Übersiedlung an. Im vorliegenden Fall wäre eine komplette Umsiedlung des Betriebes aus den örtlichen Gegebenheiten auch nicht möglich.

Durch integrative Arbeit von Planern und Ausführenden an einem Prototypen eines Fassaden- und Dachelementes wurde intensive Qualitäts- und Zielsicherung betrieben. Es soll weiters ein Probelauf des kompletten Montagevorgangs mit sämtlichen Beteiligten vor Baubeginn durchgeführt werden. Dies trägt zur Vermeidung von Fehlern und Koordinationsverlusten bei der eigentlichen Ausführung und zur Vermeidung von Kosten für daraus folgende Reparaturen bei.

Nettoerrichtungskosten pro m² Wohnnutzfläche:

 Bestand:
 5665m²

 Neubau:
 979m²

 Nettoherstellungskosten
 1.571.828.- €

 bezogen auf neu errichtete Flächen
 979m²
 1.605 €/m²

- Ortsüblicher Preis pro 1m² Putzfassade mit Fensterelement netto € 350.- bis € 600.-
- S.A.M. Preis pro 1m² Fassadenelement netto € 466.-

5.8 Sonstiges

Die umfassende Herangehensweise an das Projekt dokumentiert sich in der Ausdehnung der ursprünglich geplanten Sanierung der Westfassade in den Zimmergeschossen OG1-3 auf weitere Problemfelder der bestehenden Anlage, und stellt damit exemplarisch die oft eingeschränkte Situation am Beginn von Sanierungsvorhaben dar. Der Auftraggeber konnte überzeugt werden das Erdgeschoss, in dem neue sonnige Aufenthaltsbereiche im Inneren und erstmals direkte Zugangsmöglichkeiten zum vorgelagerten Park und geschützte Aufenthaltsbereiche im Freien geschaffen werden, in die Sanierung mit einzubeziehen.

Weitere Überlegungen im Rahmen der Erarbeitung des Projektes befassten sich mit den Gemeinschaftsbereichen in den Zimmergeschossen die derzeit ausschließlich nach Osten gegen den Hang orientiert sind und dadurch ohne Sonneneinstrahlung sind. Der Vorschlag der Architekten ist die Auflassung von einem Zimmer pro Geschoss zugunsten der Öffnung der Gemeinschaftsbereiche zur Westsfassade und der Schaffung von Durchblicken vom Stiegenhaus zum Park. In den vielfach zu breiten Gängen sollen durch möbelartige Einbauten zum Aufenthalt einladende Bereiche und Nischen entstehen. Diese Maßnahmen ordnen die Raumfunktionen neu und erfüllen die geänderten funktionellen Anforderungen vor allem im Bereich des Personals. Die Ausführung des vorgeschlagenen Konzeptes ist aus Budgetgründen jedoch aufgeschoben.

5.9 Beabsichtigte Auswertung der Ergebnisse

5.9.1 Website

Die Verbreitung der Ergebnisse der Studie Revitalisierung mit S.A.M. soll über eine interaktive Website erfolgen:

www.rev-sam.at

5.9.2 Publikationen

In folgenden branchenspezifischen Medien werden Publikationen angestrebt:

Architektur Architekturzeitschrift
Architektur Aktuell Architekturzeitschrift

Architektur und Bauforum Architekturzeitschrift mit Bauberichten

Architektur und Bauinstallation Architekturzeitschrift

Baumagazin Magazin für Sanierung und Neubau

Detail Architekturzeitschrift

Erneuerbare Energie Zeitschrift für eine nachhaltige

Energiezukunft

Zeitschrift des österr. Gemeindebundes offizielle Informationsplattform der

Gemeinden

ImmobilienreportZeitschrift für Bauen und ImmobilienBaunetz.deInternetplattform für Architekten und

Baufirmen

Nextroom.at Internetplattform für Architektur

5.9.3 Videodokumentation:

Es soll ein Baudokumentationsfilm in der Länge von ca. 10 min. über das Projekt "Sanierung Altenpflegeheim Landeck" erstellt werden.

Im Überblick werden die einzelnen Abschnitte dokumentiert und das grundlegende Konzept von Revitalisierung mit S.A.M. 01 erklärt.

Ebenso soll die Vorproduktion der Fertigteilelemente ausführlich dokumentiert werden:

- Produktion der Einzelteile in den Zulieferbetrieben (Zimmerer, Glaser, Spengler, Tischler)
- Assembling der Einzelteile im Holzbauwerk (Dach- und Wandelemente komplett Innen und Außen mit Elektro- und Heizungsinstallation)
- Abbrucharbeiten und Montage der Fertigteilelemente auf der Baustelle
- Innenausbau der Zimmer (Fußboden, Wände, Decke)
- Darstellung des Zeitablaufes (je 3 Zimmer in je 5 Tagen umgebaut, gesamt 105 Zimmer)
- Dokumentation der konventionellen Baumassnahmen im Erdgeschoss (Wintergärten)
- Darstellung des fertigen Objektes, ev. Interviews mit den Nutzern und Beteiligten

5.9.4 Workshop:

Der Projektverfasser plant das Anwendungskonzept gemeinsam mit weiteren Projekten von "Haus der Zukunft" einem ausgewählten Personenkreis zu präsentieren und in Hinblick auf eine Vertiefung und ev. zukünftige Projekte zu bearbeiten.

6. AUSBLICKE

6.1 weitere Projekte

• Erneuerbare Energie:

Ein nächster Schritt in der umfassenden Betrachtung der Aufgabe ist für den Auftraggeber die Prüfung des Umstieges auf nachwachsende Energieträger für Heizung und Solarenergie für Warmwasserbereitung ev. mit einem Contracting Partner. Dazu soll das Ergebnis des entsprechenden Forschungsprojektes im Rahmen der Programmlinie "Haus der Zukunft" abgewartet und ev. die Verfasser zu einem Workshop vor Ort eingeladen werden. Die Nutzung der Abwasserwärme mittels eines Wärmetauschers soll in diesem Rahmen ebenfalls untersucht werden.

Innenraumgestaltung

Die bereits im Entwurf erstellte Studie für eine Überarbeitung der Gemeinschaftsbereiche, wie sie im Erdgeschoss im Zuge des Bauprojekts bereits zum Teil verwirklicht wird, ist ein sinnvoller weiterer Schritt das Projekt Revitalisierung Altenheim Landeck zu einem Abschluss zu bringen. Die Möglichkeit und die Bereitschaft der Gemeinde weitere technisch nicht erforderliche aber sozial umso wichtigere Investitionen zu tätigen, wird sich erst nach dem erfolgreichen Abschluss der Sanierung Westfassade neu diskutieren lassen.

S.A.M.02 und S.A.M.03

Die Nachfolgestudien über die Sanierung von Plattenbauten in Bratislava und Gründerzeithöfen in Wien befinden sich bereits kurz vor dem Abschluss und werden in Kürze als Endberichte vorliegen. Mit den drei Studien S.A.M.01 – 03 wird die umfassende Anwendbarkeit des Konzepts der nachhaltigen Herangehensweise an Sanierungen demonstriert.

• S.A.M. vom Dach

Dachbodenausbau als Thema für eine neue Studie, new living forms

6.2. Folgenabschätzung (in wirtschaftlicher, gesellschaftlicher und ökologischer Hinsicht)

Ca. 30% aller sanierungsbedürftigen Gebäude nach 1950 können durch das Sanierungssystem mit Synergie aktivierenden Modulen nachhaltig saniert werden. Aufgrund des mehrdimensionalen variablen Zuganges ist das Konzept "Revitalisierung mit S.A.M." vielfältig anwendbar und in hohem Maß geeignet Sanierungsziele über jede konventionelle Methode hinaus zu erreichen. Durch die neuen Möglichkeiten werden die erreichbaren Ziele von Sanierungen neu definiert. Die Effizienz von Investitionen in bestehende Gebäude kann durch synergetische Betrachtung wesentlich gesteigert werden.

Der erhöhte Bedarf an Holzfertigteilbauweise und innovativer Glastechnik stellt einen weiteren Impuls für die heimische Wirtschaft dar, die gerade beginnt sich auf diesem zukunftsträchtigen

Sektor zu etablieren (z.B. Merz Kaufmann Partner, htt15 etc.). Zukünftige Projekte in der entwicklungsschwachen Region Tiroler Oberland können von diesem Know How über die beteiligten Firmen direkt profitieren. Es ist auch ein Export von Erfahrung und Technologie in umliegende wirtschaftsstarke Regionen denkbar (Tourismuszentren in Tirol, Südtirol, Bayern und Vorarlberg).

Das vorliegende baureife Forschungsprojekt der Programmlinie "Haus der Zukunft" ist das erste Bauvorhaben im Bereich Sanierung das bis Juli 2004 realisiert werden soll. Die Demonstration der Ergebnisse der Untersuchung über "Revitalisierung mit S.A.M." ohne Nutzungsunterbrechung ist geeignet einen überregionalen Impuls für Sanierungsprojekte vor allem bei Alten- und Pflegeheimen, Schüler- und Studentenheimen und dezentralen Krankenhäusern etc. zu setzen und neue Wege einer nachhaltigen Vorgangsweise aufzuzeigen. Der Bedarf an Sanierungen dieser Art ist stark steigend, ebenso der Bedarf an Pflegeplätzen, Schüler- und Studentenwohnungen (in Folge z.B. der Fachhochschulen) und auch Krankenbetten. Die Lage des Projektes in einer strukturschwachen Gegend, ist ein zusätzliches Argument, da einseitig ausgelastete lokale Betriebe die Möglichkeit erhalten sich mit neuem Wissen einen Wettbewerbsvorteil zu erwerben.

7. ANHANG

7.1 Beteiligte

7.1.1 Verfasser, Entwurf und Konzept

DI Feria Gharakhanzadeh

1070 Wien, Westbahnstrasse 26/4
T +43 1 5237999
F +43 01 5238782
M +43 664 3966753
E feria.gharakhanzadeh@wohnbau.tuwien.ac.at

Architekt Bruno Sandbichler

1070 Wien, Westbahnstrasse 26/4 T +43 1 5237999 F +43 1 5238782 M +43 664 4443432 E bruno.sandbichler@sil.at

7.2.2 Ausarbeitung und Detailplanung

DI Elisabeth Sacken

1080 Wien, Lerchenfeldergürtel 48/12 T +43 1 790703322 M +43 699 10234488 E bernhard.gold@lotterien.at

DI Ulrike Stehlik

1050 Wien, Schönbrunner Strasse 106/16 M +43 699 12090244 E u_stehlik@hotmail.com

DI Martina Hornek

1020 Wien, Ferdinandstr. 23/10, M +43 699-119 22 866 E hornek@diemelange.at

DI Alexander Wildzeisz

1030 Wien , Bechardg. 22/10 M +43 699 19427914

Eric Phillipp

1060 Wien, Stumpergasse 5/33 M +43 699 19695707 E phillipp@ballesterer.at

Sophie Hofmann

1010 Wien, Grünangerg. 1/33 M +43 699 10883062 E sophie.hofmann@gmx.net

Sanja Piro

1020 Wien, Untere Augartenstr. 26/19 M +43 650 4872774 E pirosi@gmx.at

Doris Siegesleuthner

1050 Wien, Pilgramgasse 9/20 M +43 650 737 71 21 E doris@oh2.at

7.2.3 Konsulenten

Ing. Thomas Speribauer

M +43 069910563418

E thomas_sperlbauer@yahoo.de

Wärmebedarfsberechnung

Entwurf

Zimmermeister Franz Ritzer

1040 Wien, Schleifmühlgasse 13/27 T +43 05332 77499 M +43 0669 11841367

E franz.ritzer@gmx.at

Modellbau, Holzbautechnik

Mag. Adolf Sandbichler

6020 Innsbruck, Innrain 54A M +43 664 8212872

E adisan@knu.st

Webdesign

DI Gerhild Stosch

Ausführung, s&w energieconsulting Technisches Büro für Maschinenbau 8010 Graz, Hafnerriegel 45/7 1050 Wien, Diehlgasse 50/28 T +43 1 5481747 E g.sto@eunet.at Wärmebedarfsberechnung Sommerliche Überhitzung

7.2.4 Planungspartner Ausführung

Mag. Peter Sandbichler

1070 Wien, Westbahnstrasse 26 M +43 699 10026530 E peter@liquidfrontiers.com Kunst am Bau Projekt

DI Peter Fiby

6020 Innsbruck, Resselstrasse 39

T +43 512 392130

F +43 512 392130

M +43 676 3803970

E peter.fiby@tirol.com

Ing. Gerhard Bombardelli Elektroplanung

6460 Imst, Sirapuit 29

T +43 5412 65383

M +43 650 8401123

E tb-bombardelli@tirol.com

Max Nötzold Heizungsplanung

6491 Schönwies, Siedlung 70

T +43 5418 5396

F +43 5418 5593

M +43 664 2045380

E max.noetzold@tirol.com

DI Walter Pesjak Statik

6511 Zams, Hauptstraße 97

T +43 5442 64510

F +43 5442 6451010

M +43 664 4515598

E pesjak@mynet.at

Energie Tirol

Herr Astl

Energieberatung

6020 Innsbruck, Adamgasse 4/3

T +43 512 589913

F +43 512 5899130

Rudigier, R& S Planbau

6500 Landeck, Bruggfeldstrasse 5

T +43 5442 67144

F +43 5442 671449

Baum. Reinhard Spiss, R& S Planbau

6500 Landeck, Bruggfeldstrasse 5

T +43 5442 67144

F +43 5442 671449

M +43 699 11774571

E r-s.planbau@tirol.to

Bauzeitplanung, örtliche Bauleitung

Bauphysik

IBS Gmbh, Institut für Brandschutztechnik und Sicherheitsforschung

Staatl. akkreditierte Prüf – und Überwachungsstelle

vorbeugender Brandschutz

4017 Linz, Petzoldstrasse 45

T +43 732 7617850

F +43 732 761789

E office@ibs-austria.at

Beratung vorbeugender Herr

Brandschutz

Tiroler Landesstelle für Brandverhütung

Herr Ostermann 6020 Innsbruck, Sterzinger Strasse 2 T +43 512 581373 17 F +43 512 581453 20

7.2 Literaturliste

Friedman, Yona; "Machbare Utopien, Absage an geläufige Zukunftmodelle "; Fischer Taschenbuch Verlag, Frankfurt am Main, 1977

Fussler Claude; "Die Öko Innovation, Wie Unternehmen profitabel und umweltfreundlich sein können ";

S. Hirzel Verlag, Stuttgart, 1999

Koolhaas, Rem; Boeri, Stefano; Kwinter, Sanford; Tazi, Nadia; Obrist, Hans, Ulrich; "Mutations "; ACTAR, arc en reve centre d'architecture, Bordeaux

Moewes, Günther; "Weder Hütten noch Paläste, Architektur und Ökologie in der Arbeitsgesellschaft "; Birkhäuser Verlag, Basel, 1995

Mosso, Leonardo; "Alvaro Aalto"; Studioforma Editore

Natterer, Julius; Herzog, Thomas; Volz, Michael; "Holzbau Atlas "; Rudolf Müller Verlag, 2000

Prouvé, Jean; " Architecture / Industrie «; Klient, Enterprise, Paris

Steiner, Dietmar; "Architektur, Beispiele Eternit, Kulturgeschichte eines Baustoffs "; Löcker Verlag, Wien. 1994

Stiller, Adolph; Šlachta, Štefan; "Architektur Slowakei, Impulse und Reflexion "; Verlag Anton Pustet

Wachsmann, Konrad; "Holzhausbau, Technik und Gestaltung "; Birkhäuser Verlag, Basel, Boston, Berlin

Wachsmann, Konrad; "Wendepunkt im Bauen "; Deutsche Verlags – Anstalt, Stuttgart

Villear, Rafael; Mooser, Markus, Emanuel; von Büren, Charles; "Neuer Holzbau im Bild, Dokumentation zu aktuellen Werken "; Lignum, Zürich, 1997

Price, Cedric; "Re: CP "; Birkhäuser Verlag, Basel, Boston, Berlin, 2003

Allan, Wexler; " GG Portaolio "; Gustavo Gilli, SA, Barcelona, 1998

Friedmann, Yona; "Structures serving the unpredictable "; NAi Publishers, Rotterdam, 1999

Wigley, Mark; "Constant's New Babylon, The Hyper – Architecture of Desire "; Constant c/o Beeldrecht, Amsterdam, 1998

Hinte, van Ed; Neelen, Marc; Vink, Jacques; Vollaard, Piet; "Smart Architecture", 010 Publishers, Rotterdam, 2003

Herzog, Thomas; Natterer, Julius; Schweizer, Roland; Volz, Michael; Winter, Wolfgang; "Holzbau Atlas Birkhäuser Verlag, Basel, Boston, Berlin, 2003

Strategien zur ökologischen Sanierung von Plattenbauten; Endbericht Tschechisch-Österreichische Energiepartnerchaft; im Auftrag des Bundesministeriums für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft, Wien, Juni 2001

Alte Formen in Bildern, sueddeutsche.de, 02.05.2002

IEMB - Institut für Erhaltung und Modernisierung von Bauwerken, www.iemb.de

Architekturstudenten verwandeln Plattenbauten in moderne Eigenheime; Goethe-Institut, 2002

Leitfaden zur Wohnbausanierung mit besonderer Berücksichtigung von Plattenbauten; Kooperation der Städte Budapest und Wien auf dem Gebiet der Wohnbausanierung, INTERREG Ilc Programm der Europäischen Union, November 2000

7.3 Linkliste

- http://www.baunetz.de/db/news/meldungen_artikel_fotos.php?news_id=77314
- http://www.baunetz.de/db/news/meldungen_artikel_fotos.php?news_id=75267
- http://www.esa-solarfassade.at
- http://www.iemb.de
- http://www2.rz.hu-berlin.de/stadtsoz/Lehre/Lehrforschungsprojekte/Gro%DFsiedlungen_Ost/ wiederinwertsetzung.pdf
- http://www.utn.at/04projinform/downloads/leitfaden_zur_wohnbausanierung_001128.pdf
- http://www.holzforschung.at/
- http://www.passiv.de/
- http://www.umdenken.de/ab2001/ab_t.htm
- http://www.e3building.net/ge/db/index.php?exp_themalD=55#top
- http://taten.municipia.at/alle/o_Name/
- http://www.nabu.de/m01/m01_01/00202.html
- http://www.eurosolar.at/

